{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"利用蒙特卡罗程序FLUKA模拟计算了聚乙烯慢化球和辅助材料慢化球对低能中子到高能中子的响应函数曲线。结果表明,对纯聚乙烯球来说,随着聚乙烯层厚度的增加,响应曲线峰逐步右移,峰值在高能区有所下降,对20 MeV以上的中子,无论纯聚乙烯球的尺寸有多大,其响应均下降到很低的程度;对辅助材料慢化球来说,中子能量小于1 MeV时,辅助材料慢化球与聚乙烯慢化球的响应曲线相似,但当中子能量大于20 MeV时,中子与辅助材料层发生(n,xn)反应,慢化球的响应呈显著上升趋势。分析计算结果,最终能够确定宽能谱多球中子谱仪的尺寸组合。","authors":[{"authorName":"袁娇","id":"ffcd1e0a-8176-4f09-9ab6-a85e6bbc32ad","originalAuthorName":"袁娇"},{"authorName":"苏有武","id":"45c2ada6-0697-4cb2-8258-e89004734c68","originalAuthorName":"苏有武"},{"authorName":"李武元","id":"1a74ddf2-9508-4ce9-bfca-f4d79daafd10","originalAuthorName":"李武元"},{"authorName":"徐俊奎","id":"d8116fd2-c3fa-4626-a6b6-2d8dc4e853c9","originalAuthorName":"徐俊奎"},{"authorName":"庞成果","id":"9d9f5255-78ff-4961-a0b2-96fc04a2ce5d","originalAuthorName":"庞成果"},{"authorName":"严维伟","id":"ae418ba6-4086-4687-b818-e0250b90d5d4","originalAuthorName":"严维伟"},{"authorName":"李宗强","id":"5b18b10f-80cb-49a1-9d19-c4e6c3d6ac4a","originalAuthorName":"李宗强"},{"authorName":"毛旺","id":"29db51f6-3196-48e0-9140-b1e942eddc55","originalAuthorName":"毛旺"},{"authorName":"徐翀","id":"ae612158-2b5d-468d-b846-5e19acc7d39b","originalAuthorName":"徐翀"},{"authorName":"左伟","id":"f43fe659-8f7a-4ac1-a7c8-2b47e86f128d","originalAuthorName":"左伟"},{"authorName":"付鑫","id":"f8813655-8e43-4dbc-9566-10410aeb9fea","originalAuthorName":"付鑫"}],"doi":"10.11804/NuclPhysRev.32.02.224","fpage":"224","id":"7de0436e-9a7c-4fe4-be44-dc5ca26752c3","issue":"2","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"e2d14bc4-5b1c-47c4-9d14-8264243d1676","keyword":"FLUKA","originalKeyword":"FLUKA"},{"id":"fd8c5569-d9ec-4fb4-b0f6-a63a0e69c282","keyword":"多球谱仪","originalKeyword":"多球谱仪"},{"id":"ac0e7e33-ff9a-4fee-87b8-37d87088b229","keyword":"响应函数","originalKeyword":"响应函数"},{"id":"d3d06aed-120b-4114-b06c-6f94d24da5f2","keyword":"聚乙烯","originalKeyword":"聚乙烯"},{"id":"e8b434e5-6748-4a0d-8f4f-adcb5728adfa","keyword":"辅助材料","originalKeyword":"辅助材料"}],"language":"zh","publisherId":"yzhwlpl201502016","title":"一种宽能谱多球中子谱仪能量响应的MC模拟","volume":"","year":"2015"},{"abstractinfo":"加速器驱动次临界系统C-ADS注入器Ⅱ采用强流超导质子直线加速器,设计流强达到10 mA。强流质子束产生的束流损失有可能损伤超导腔,需要专用的束流损失监测系统进行监测,束流损失探测器(BLM)需要在高能量沉积导致超导腔失超之前提供警报。通过MCNPX模拟计算10 MeV质子在半波谐振腔(HWR)不同位置损失产生的辐射场,比较选取超导腔管道进出口处4个位置为推荐束损探测器放置的位置,结合HWR腔结构和束损探测器选择的影响因素,计算了次级辐射在金刚石探测器中的能量沉积以及1°~5°不同质子入射角度对探测的影响。结果表明,根据不同位置处探测器的能量沉积关系可以推断出束损点;不同入射角度不会影响生成粒子的能量分布,只轻微影响生成粒子的数目。","authors":[{"authorName":"左伟","id":"7e1f6fc9-1499-4f75-9500-fe076ae8ba99","originalAuthorName":"左伟"},{"authorName":"苏有武","id":"6b029f2f-3703-4846-b98d-a152ca95c4fa","originalAuthorName":"苏有武"},{"authorName":"庞成果","id":"eedcda18-99fb-4e91-bcac-335b7f4d9776","originalAuthorName":"庞成果"},{"authorName":"李武元","id":"4241462c-fe05-4ada-9d85-49e1a8e98493","originalAuthorName":"李武元"},{"authorName":"徐俊奎","id":"a954e098-75ac-4ead-ac8a-2938d4ac9d47","originalAuthorName":"徐俊奎"},{"authorName":"李宗强","id":"09dac3dc-07cf-4134-a0a0-4dce63b97ac9","originalAuthorName":"李宗强"},{"authorName":"毛旺","id":"6f19308f-ef38-4822-b9e7-3e757194e0fd","originalAuthorName":"毛旺"},{"authorName":"严维伟","id":"8d419a3e-bb1c-4edf-9bb4-352b1ba9da00","originalAuthorName":"严维伟"},{"authorName":"徐翀","id":"1648150f-503a-43bb-963e-46ada3c34537","originalAuthorName":"徐翀"},{"authorName":"付鑫","id":"93d20244-113a-4708-8333-c484e7dfe186","originalAuthorName":"付鑫"}],"doi":"10.11804/NuclPhysRev.33.01.072","fpage":"72","id":"890a1423-ab11-43f3-a3cc-e00478e82e0d","issue":"1","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"a5034ddb-5f08-4cd9-9866-7fa264244b9c","keyword":"HWR","originalKeyword":"HWR"},{"id":"19ad71fa-4042-448a-b226-a07244595fa9","keyword":"辐射场","originalKeyword":"辐射场"},{"id":"c2a52c6f-fe82-4756-8cd9-4c3bde71c5e7","keyword":"束流损失探测器","originalKeyword":"束流损失探测器"},{"id":"5d29ca23-525f-4c34-bb55-a5f05b9ff10c","keyword":"MCNPX","originalKeyword":"MCNPX"}],"language":"zh","publisherId":"yzhwlpl201601014","title":"金刚石探测器用于C-ADS注入器Ⅱ束损探测的模拟研究","volume":"33","year":"2016"},{"abstractinfo":"利用蒙特卡罗程序MCNPX模拟计算了纯聚乙烯球和加入辅助材料的聚乙烯球对不同能量中子的响应函数曲线,使用计算出来的响应函数作为U-M-G软件解谱所需输入文件.研发了一套专门为此多球谱仪进行数据采集的放大甄别一体化电路,该电路可为SP9管提供900 V的工作高压,甄别阈设为0.5V,总的放大倍数为200倍.使用研制的Bonner球谱仪对已知源强的Pu-Be中子源进行能谱测量,测量结果显示解出的能谱数据与实际Pu-Be源中子能谱较为符合,实验结果验证了该套多球谱仪可用于测量Pu-Be能区的中子谱.","authors":[{"authorName":"付鑫","id":"d4b6fe45-b8a7-45fa-be90-9e12367203bc","originalAuthorName":"付鑫"},{"authorName":"李宗强","id":"adc03dea-e2a5-4b66-8820-f9e66adcf9d4","originalAuthorName":"李宗强"},{"authorName":"徐俊奎","id":"5fcd4374-5ee9-4e1a-b045-83ffc0a7e2f9","originalAuthorName":"徐俊奎"},{"authorName":"李武元","id":"1394ed04-f182-4a4c-a9ff-5cb3b7396246","originalAuthorName":"李武元"},{"authorName":"苏有武","id":"b092431b-4c49-49e6-a285-6fc8a4b8bd12","originalAuthorName":"苏有武"},{"authorName":"毛旺","id":"5cc4b499-9afb-42d9-83bf-cd61def80f14","originalAuthorName":"毛旺"},{"authorName":"严维伟","id":"5d0dbeca-4eee-418b-8efc-81ca2402615e","originalAuthorName":"严维伟"},{"authorName":"徐翀","id":"9c78f895-8b12-4b1a-b2b6-a92dffee32cc","originalAuthorName":"徐翀"},{"authorName":"庞成果","id":"a6e9012e-3c60-4b32-a5ce-1dc8b07fd4e8","originalAuthorName":"庞成果"}],"doi":"10.11804/NuclPhysRev.33.04.466","fpage":"466","id":"78bd154f-abe2-4f7b-871c-ab70a06c9827","issue":"4","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"1c072271-a39c-448d-988b-cf413efe06ed","keyword":"球中子谱仪","originalKeyword":"球中子谱仪"},{"id":"e194961b-fc84-484d-97a5-916bc39c482d","keyword":"U-M-G","originalKeyword":"U-M-G"},{"id":"49a22647-ceb7-4b7d-8c44-c8e0853a4c28","keyword":"能量响应函数","originalKeyword":"能量响应函数"},{"id":"be1192df-0765-4103-b966-6b6abac10feb","keyword":"MCNPX","originalKeyword":"MCNPX"}],"language":"zh","publisherId":"yzhwlpl201604014","title":"一种宽能谱多球中子谱仪的研制","volume":"33","year":"2016"},{"abstractinfo":"单轴、双轴和三轴徐变试验结果表明,混凝土的徐变与弹性变形一样具有空间特性,但根据单轴徐变试验得到的徐变系数、徐变泊松比以及采用叠加原理计算的双轴、三轴应力状态下的空间徐变与实际情况存在较大偏差.为了准确计算不同应力状态下混凝土的空间徐变,介绍了应力组合对有效徐变泊松比的影响和基于有效徐变泊松比的空间徐变计算方法.另外,根据应力张量的弹性力学意义,引入了球应力徐变系数(ψ)m和偏应力徐变系数(ψ) d,提出了基于这两个徐变系数的空间徐变计算统一表达式,可计算混凝土在单轴、双轴和三轴等不同应力状态下的空间徐变.","authors":[{"authorName":"黄胜前","id":"f60fe1e8-6699-466b-8f2e-355e391d0c51","originalAuthorName":"黄胜前"},{"authorName":"杨永清","id":"0ad9d4be-4c12-4497-a380-8dee2c8f7ad4","originalAuthorName":"杨永清"},{"authorName":"李晓斌","id":"a5e2e801-c9b9-4f4b-886e-c62ae3c23491","originalAuthorName":"李晓斌"},{"authorName":"陈志伟","id":"db16b3f8-4c53-49d7-bdd3-f6cf5f2247c1","originalAuthorName":"陈志伟"}],"doi":"","fpage":"150","id":"77593762-6ffb-4cfa-913f-f64ffef2186c","issue":"2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"69ea1570-d4c9-437e-bfef-97ae77a244a5","keyword":"混凝土","originalKeyword":"混凝土"},{"id":"9785e9c9-1fc1-4ea3-ab52-a37f97e3f32e","keyword":"单轴","originalKeyword":"单轴"},{"id":"4565bb1b-db4a-4cd3-8595-f4cc47900c42","keyword":"双轴","originalKeyword":"双轴"},{"id":"59877901-b9f9-4bd2-a23d-bca130502b51","keyword":"三轴","originalKeyword":"三轴"},{"id":"375cdb53-1ae1-4106-b024-cece1bb5b8eb","keyword":"应力状态","originalKeyword":"应力状态"},{"id":"2edbc816-e655-4662-9602-f0529134d608","keyword":"空间徐变","originalKeyword":"空间徐变"}],"language":"zh","publisherId":"cldb201302040","title":"不同应力状态下混凝土空间徐变的统一表达式","volume":"27","year":"2013"},{"abstractinfo":"为了研究不同配合比设计方法对再生混凝土长期徐变性能的影响,分别采用等体积砂浆法(EMV法)与传统替代法配制再生混凝土,测试各组再生混凝土试件28 d龄期后自然条件下持荷的变形值和相同试验条件下试件的收缩值,并计算各组试件的徐变度.研究结果表明:两种方法配制的再生混凝土的收缩徐变变化规律与对比普通混凝土相似.EMV法可有效改善再生混凝土的徐变性能,具有较低的徐变度.","authors":[{"authorName":"霍俊芳","id":"55188923-049c-49aa-994c-ac564398860f","originalAuthorName":"霍俊芳"},{"authorName":"李晨霞","id":"8fa10b03-f76b-44b4-97ee-bd67d36d407e","originalAuthorName":"李晨霞"},{"authorName":"侯永利","id":"83d612b7-ba2c-46d3-a2ff-d86f396b5f77","originalAuthorName":"侯永利"},{"authorName":"吕笑岩","id":"98dd9616-8bca-4990-9631-ef1c189dce52","originalAuthorName":"吕笑岩"}],"doi":"","fpage":"723","id":"dc2db04e-0a0c-4741-830f-d84f7a4e5aee","issue":"2","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"d2a7136a-24da-4dc5-b2c8-c753ce344b72","keyword":"再生混凝土","originalKeyword":"再生混凝土"},{"id":"46b36702-7dae-4dad-b1c2-1996ae105250","keyword":"配合比","originalKeyword":"配合比"},{"id":"69440820-bb2f-4272-abe2-bdc4edbd2d6e","keyword":"徐变","originalKeyword":"徐变"}],"language":"zh","publisherId":"gsytb201702054","title":"再生粗骨料混凝土收缩徐变性能试验","volume":"36","year":"2017"},{"abstractinfo":"本文阐述了FRP应力松弛、徐变性能的研究意义,总结了国内外关于应力松弛、徐变性能的最新研究成果及主要影响因素,并探讨了应力松弛和徐变的计算模型,对未来FRP长期性能研究的发展方向做出了展望.","authors":[{"authorName":"李建辉","id":"0f7148fe-f8bb-4e01-9827-43b6d6088f0a","originalAuthorName":"李建辉"},{"authorName":"邓宗才","id":"734ba4b3-500c-4ca4-adda-8e3a09ca07b3","originalAuthorName":"邓宗才"}],"doi":"10.3969/j.issn.1003-0999.2007.03.016","fpage":"56","id":"59ffbb46-47b1-40d6-8ec4-254b9f0174de","issue":"3","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"3192da00-b6fe-4a92-a3fe-eec5f9cca17e","keyword":"FRP","originalKeyword":"FRP"},{"id":"812f44d9-8adc-47b7-95e7-d14c2fe8670d","keyword":"应力松弛","originalKeyword":"应力松弛"},{"id":"37e0f5f2-7caa-403e-96f9-d45fa60555ee","keyword":"徐变","originalKeyword":"徐变"},{"id":"290bc541-6726-480e-a116-34147a7cb2ae","keyword":"前景展望","originalKeyword":"前景展望"}],"language":"zh","publisherId":"blgfhcl200703016","title":"FRP应力松弛及徐变性能的研究近展","volume":"","year":"2007"},{"abstractinfo":"采用自制的徐变加载装置,研究了聚乙烯醇(PVA)纤维、双掺粉煤灰和矿渣以及减缩剂对7d等强度混凝土徐变性能的影响规律,结合与混凝土同水胶比浆体的化合结合水量分析了其影响机理.结果表明,混凝土徐变系数发展较快,加载100d左右趋于稳定;减缩剂和双掺矿物掺合料均明显降低了混凝土的徐变系数,以掺减缩剂效果更好,450d值仅为0.63,而PVA纤维增加了徐变系数;混凝土的徐变系数随浆体化学结合水量的增加而降低,60d早龄期浆体水化有利于降低徐变系数,450d后期水化产物对降低混凝土的徐变系数贡献不大.","authors":[{"authorName":"何智海","id":"d284a902-9f8e-4b08-94b4-bb64a0ab69a8","originalAuthorName":"何智海"},{"authorName":"钱春香","id":"0ffbbe0c-1b53-4782-aa33-1b1c9ed2432d","originalAuthorName":"钱春香"},{"authorName":"钱桂枫","id":"dd861e3b-72df-4e42-acc8-72f6bb385518","originalAuthorName":"钱桂枫"},{"authorName":"孟凡利","id":"28a07ab2-0d08-4d67-b8cb-ea65ad3f7ef0","originalAuthorName":"孟凡利"},{"authorName":"程飞","id":"8f433d59-aca3-4626-a346-16e01790b998","originalAuthorName":"程飞"},{"authorName":"高祥彪","id":"6c683991-a878-456e-ae60-df7fce0e0d8b","originalAuthorName":"高祥彪"},{"authorName":"庄园","id":"e0d49cad-3f8c-4544-8501-e47b67079e01","originalAuthorName":"庄园"}],"doi":"","fpage":"925","id":"012cf742-03f0-418f-88af-49ca86d1e1fb","issue":"5","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"7473f418-c202-45ab-81d0-4cf29e9e7c03","keyword":"混凝土","originalKeyword":"混凝土"},{"id":"48514fe2-20e4-4695-aa58-fea087a0e070","keyword":"徐变系数","originalKeyword":"徐变系数"},{"id":"67a4ff0b-a8af-44ec-bfc8-714b1c72b529","keyword":"化学结合水","originalKeyword":"化学结合水"},{"id":"76f5dbf7-811b-463b-8ed6-5e1d515f895b","keyword":"减缩剂","originalKeyword":"减缩剂"},{"id":"5ea7a23a-4846-468e-a494-01c352107864","keyword":"等强度","originalKeyword":"等强度"}],"language":"zh","publisherId":"gncl201105040","title":"等强度下混凝土组分对徐变性能的影响","volume":"42","year":"2011"},{"abstractinfo":"采用自制的徐变加载装置,研究了萘系减水剂、聚羧酸减水剂以缓凝组分、减缩组分对等配合比混凝土徐变的影响规律,结合与混凝土同水灰比浆体非可蒸发水含量及混凝土内部相对湿度演化分析了其影响机理.结果表明,相比萘系减水剂,聚羧酸减水剂能显著降低混凝土的徐变,其中以早强型聚羧酸减水剂的效果最好;减缩剂对混凝土的徐变有降低作用,缓凝组分的掺入对徐变有不利影响;聚羧酸减水剂和减缩组分能通过降低混凝土内部水分传输和向外界扩散来降低徐变;早强型聚羧酸使浆体具有较多的水化产物数量,对强度的增加和徐变的降低有一定好处,缓凝组分的掺入会延缓水化并减少总水化产物数量,降低强度,使徐变增加.","authors":[{"authorName":"张异","id":"ec340278-6d5c-4d88-99cd-92ecbf14c3de","originalAuthorName":"张异"},{"authorName":"钱春香","id":"6283fdf1-1e86-4f95-9386-4d0f621336ae","originalAuthorName":"钱春香"},{"authorName":"赵飞","id":"c2e62026-2cba-44d3-98ea-9c4bea97ae2a","originalAuthorName":"赵飞"},{"authorName":"何智海","id":"e248a81c-0309-4f52-948c-33abefbfdb85","originalAuthorName":"何智海"},{"authorName":"曲军","id":"8ffd3667-7c95-4a2c-8af6-473aba7b8aff","originalAuthorName":"曲军"},{"authorName":"郭景强","id":"bb3a41ea-646e-4070-aa43-4fa748725358","originalAuthorName":"郭景强"},{"authorName":"","id":"3c1baf9a-ef00-41d3-b730-79569cbe2b9d","originalAuthorName":""}],"doi":"10.3969/j.issn.1001-9731.2013.11.023","fpage":"1620","id":"d3cbe933-f50e-4134-ab17-c124ad18db38","issue":"11","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"66f7978b-6b62-4021-bd9e-469d3dde0824","keyword":"混凝土","originalKeyword":"混凝土"},{"id":"8efa8ed0-5daf-4d86-9e26-abc4fd830f4e","keyword":"徐变度","originalKeyword":"徐变度"},{"id":"5996e33b-b097-423e-8fbf-add299a3954b","keyword":"减水剂","originalKeyword":"减水剂"},{"id":"3c88bb35-44c2-4bbe-8948-58e858e7e724","keyword":"非可蒸发水","originalKeyword":"非可蒸发水"},{"id":"4ea69246-a041-47fb-b0a5-bf55e9a04887","keyword":"内部相对湿度","originalKeyword":"内部相对湿度"}],"language":"zh","publisherId":"gncl201311023","title":"化学外加剂对混凝土徐变的影响规律研究","volume":"44","year":"2013"},{"abstractinfo":"通过试验研究了两种水胶比分别为0.33和0.29的自密实轻骨料混凝土(SCLC)的收缩和徐变性能,并与配合比相似的普通骨料自密实混凝土(SCC)及强度接近的普通混凝土(NC)进行了对比.收缩试验从入模后12小时开始,至6个月结束.徐变试验从3天龄期开始加载,分别在7、14、21和28天继续加载,而后保持荷载不变,加载应力水平分别为相应龄期抗压强度的40%,持续12个月.试验结果表明:SCLC前10天龄期有轻微膨胀现象,收缩变形始终小于SCC和NC,至6个月时三者有接近趋势;360天龄期SCLC徐变系数低于NC和SCC,而徐变度则高于NC,与SCC相当;随着抗压强度的提高,SCLC的徐变系数和徐变度均有减小趋势.","authors":[{"authorName":"张云国","id":"16e79cf1-667b-4b63-a680-75192c67cc80","originalAuthorName":"张云国"},{"authorName":"吴熙","id":"c8c8bf57-2238-443e-b3f5-68faf6c95c1b","originalAuthorName":"吴熙"},{"authorName":"毕巧巍","id":"53a4a4dd-eb63-489e-b93b-8843a640a8f5","originalAuthorName":"毕巧巍"}],"doi":"","fpage":"35","id":"f5a97de4-eadc-4787-a106-96421737e788","issue":"1","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"7fcb2640-af48-423a-90f7-db4c26ea5cbf","keyword":"自密实轻骨料混凝土","originalKeyword":"自密实轻骨料混凝土"},{"id":"6fdf6cba-8402-435d-b3d3-27f13262dac3","keyword":"工作性能","originalKeyword":"工作性能"},{"id":"c59a40e0-7825-4deb-bf9b-3546aa6dcfc0","keyword":"收缩","originalKeyword":"收缩"},{"id":"18387f5c-7d51-4bb5-ac2c-1d89f8063394","keyword":"徐变","originalKeyword":"徐变"}],"language":"zh","publisherId":"clkxygc201401008","title":"自密实轻骨料混凝土的收缩与徐变性能","volume":"32","year":"2014"},{"abstractinfo":"通过合成的聚乙二醇马来酸半酯大单体(PMAn)取代部分烯丙基聚氧乙烯醚(XPEG)进行共聚反应,得到了徐放型聚羧酸系高性能减水剂.合成影响因素的研究结果表明,当PMAn分子量为750且PMAn取代XPEG的比例为20%时,减水剂的减水率和保坍能力最好.红外光谱分析结果表明,合成的减水剂未聚合的单体残留很少;采用合成的减水剂配制的混凝土具有突出的坍落度保持能力.","authors":[{"authorName":"麻秀星","id":"2b1630b6-d319-4bea-8e15-d7b14f669137","originalAuthorName":"麻秀星"},{"authorName":"钱觉时","id":"e8cd7b77-3bc8-43e8-a358-c40b1836b58a","originalAuthorName":"钱觉时"},{"authorName":"郭鑫祺","id":"29c3285a-b67e-4648-81f1-4ce5b29a5d4f","originalAuthorName":"郭鑫祺"},{"authorName":"方云辉","id":"b3fb147b-9142-48ec-8b35-2efe35c7fe44","originalAuthorName":"方云辉"},{"authorName":"蒋卓君","id":"8350f143-50e8-42d8-8fd5-c794e9a081a4","originalAuthorName":"蒋卓君"},{"authorName":"温庆如","id":"56bb2277-2ba2-41cd-b865-2f12c0e7d6d0","originalAuthorName":"温庆如"},{"authorName":"李苑","id":"414c4a65-66a1-4c50-b381-33a5c8cff238","originalAuthorName":"李苑"},{"authorName":"王智","id":"a9634129-6004-4324-a820-652e4049aab9","originalAuthorName":"王智"}],"doi":"","fpage":"55","id":"e3511b06-89e5-4ae6-84cb-d564b88b6375","issue":"20","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"9361657c-b80e-4db4-ad8a-f51b1bc5ad99","keyword":"聚羧酸减水剂","originalKeyword":"聚羧酸减水剂"},{"id":"d31a1bc4-11a2-4d9e-b371-4fc9ea815a75","keyword":"徐放","originalKeyword":"徐放"},{"id":"208edaa2-19e0-40b8-b18a-ce19de5d5b8c","keyword":"合成","originalKeyword":"合成"},{"id":"5fd5115c-f08f-434c-9a61-f9b1ee79d42c","keyword":"聚乙二醇马来酸半酯","originalKeyword":"聚乙二醇马来酸半酯"}],"language":"zh","publisherId":"cldb201020017","title":"徐放型聚羧酸系减水剂的合成研究","volume":"24","year":"2010"}],"totalpage":7,"totalrecord":70}