{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用基板生长工艺对各种影响气相生长碳纤维的因素进行分析.结果表明,选择硫化亚铁作为催化剂,氩气为载气,丙烯为碳源,炉内压力4200Pa左右,是气相生长碳纤维的最佳条件,可制备出直径均匀、表面光洁的碳纤维.","authors":[{"authorName":"付铁岩","id":"6ddcb12e-c82d-43f0-b73a-507188660f26","originalAuthorName":"付铁岩"},{"authorName":"孙晋良","id":"4b09f2d5-105f-468a-ae62-fd2ae1dc20f2","originalAuthorName":"孙晋良"},{"authorName":"任慕苏","id":"9f8964ae-06fb-4e9e-989f-2e83eb392d3c","originalAuthorName":"任慕苏"},{"authorName":"陈来","id":"3b34ad26-e3b1-4355-aa82-ba355dbd09cd","originalAuthorName":"陈来"},{"authorName":"周春节","id":"bef4aa18-b64a-4901-9d03-8d36127d0804","originalAuthorName":"周春节"},{"authorName":"张家宝","id":"1eb5c8dd-d3ff-4206-85da-12e918404a34","originalAuthorName":"张家宝"},{"authorName":"潘剑峰","id":"b07c7343-3e20-4759-9b78-0e8e732ae625","originalAuthorName":"潘剑峰"}],"doi":"10.3969/j.issn.1001-7208.2005.03.001","fpage":"1","id":"8c8b1db2-a499-4998-aad3-0542cf7ce7c2","issue":"3","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"de372623-f073-45dd-b61d-df1708bc3c75","keyword":"气相生长碳纤维","originalKeyword":"气相生长碳纤维"},{"id":"168117b9-baec-40db-9127-d3908f34d65e","keyword":"基板生长法","originalKeyword":"基板生长法"},{"id":"6dbe57d9-cac5-4c5d-a4d7-a3f7e1164912","keyword":"影响因素","originalKeyword":"影响因素"}],"language":"zh","publisherId":"shjs200503001","title":"气相生长碳纤维影响因素的研究","volume":"27","year":"2005"},{"abstractinfo":"采用超声均相沉淀法,以硫代乙酰胺和硫酸亚铁铵为原料,通过调整溶液pH值,并借助表面活性剂防止颗粒团聚,在常温下合成了均匀分散的FeS纳米颗粒.X射线衍射和透射电镜(TEM)分析表明颗粒直径为40~50nm.将制备的FeS溶液涂在陶瓷板上进行化学气相沉积,得到了大量直径为5~8μm的气相生长碳纤维.","authors":[{"authorName":"付铁岩","id":"21958642-0b54-4147-b706-8895822d4f6b","originalAuthorName":"付铁岩"},{"authorName":"孙晋良","id":"f9df599a-e8b6-4f35-8ef9-1c912e161d94","originalAuthorName":"孙晋良"},{"authorName":"陈来","id":"8c088bd6-4230-4179-9de9-26496bc0df36","originalAuthorName":"陈来"},{"authorName":"任慕苏","id":"b6729f1d-e6c9-49cc-853a-a98bb39e7623","originalAuthorName":"任慕苏"}],"doi":"10.3969/j.issn.1673-2812.2005.05.019","fpage":"549","id":"8a07e7a2-f245-45cf-a981-c6d02c0c0b38","issue":"5","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"9aa30109-5226-4dd7-9cfd-45477909e0e9","keyword":"气相生长碳纤维","originalKeyword":"气相生长碳纤维"},{"id":"2b90f8d2-f05c-4b62-b9e3-25b0680f6262","keyword":"硫化亚铁","originalKeyword":"硫化亚铁"},{"id":"c9db1a8b-82f1-44ee-a0cd-6f0745451642","keyword":"均相沉淀","originalKeyword":"均相沉淀"},{"id":"6c5b0c95-d332-4e2f-9dce-76ef3d06592e","keyword":"超声技术","originalKeyword":"超声技术"}],"language":"zh","publisherId":"clkxygc200505019","title":"纳米催化剂FeS的制备及其在气相生长碳纤维中的应用","volume":"23","year":"2005"},{"abstractinfo":"采用低浓度NaCN、低pH值堆浸工艺条件,处理含铜、呈酸性的铁帽型金矿石,可降低NaCN和碱的消耗,同时也有利于炭吸附,可提高炭吸附率和载金炭品位.","authors":[{"authorName":"巫汉泉","id":"574ee559-b829-4747-9e18-277171820fea","originalAuthorName":"巫汉泉"}],"doi":"10.3969/j.issn.1001-1277.2001.09.009","fpage":"32","id":"49d030f5-fed4-4b5a-8661-7211afd98374","issue":"9","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"7d61b8bf-c2f4-4bf1-9dc6-5a20735cb58a","keyword":"NaCN浓度","originalKeyword":"NaCN浓度"},{"id":"b66e8d32-a934-4148-8bfa-46d6656c2ecd","keyword":"pH值","originalKeyword":"pH值"},{"id":"4bdccc19-39e4-49df-9d24-214a72cd42af","keyword":"铁帽型金矿石","originalKeyword":"铁帽型金矿石"},{"id":"c3c6e355-3e1b-42a7-8585-9b15a565d3b9","keyword":"堆浸","originalKeyword":"堆浸"}],"language":"zh","publisherId":"huangj200109009","title":"矽卡岩铁帽型金矿石堆浸提金工艺特性","volume":"22","year":"2001"},{"abstractinfo":"以乙二胺四乙酸二钠(EDTA)、柠檬酸、草酸、酒石酸改性制备了H-BEA,并根据XRD和NH3-TPD对沸石H-BEA进行表征.采用上述改性沸石催化4-苯基丁酸分子内付克反应合成1-萘满酮进行催化剂反应活性评价.实验结果表明,以柠檬酸改性沸石H-BEA具有较高的催化活性.进一步对催化剂用量、反应温度、反应时间等工艺条件优化得到最佳工艺条件,在最佳工艺条件下,产物1-萘满酮产率达到94.3%.","authors":[{"authorName":"邱俊","id":"70aef54d-1698-4072-ade6-5aece137f1d3","originalAuthorName":"邱俊"},{"authorName":"王建刚","id":"249030d9-483f-4e98-8b62-8ef1f7c30e18","originalAuthorName":"王建刚"},{"authorName":"孙杰","id":"a428191e-8a87-41d9-bed9-7882614d4ee6","originalAuthorName":"孙杰"}],"doi":"10.3724/SP.J.1095.2011.00367","fpage":"194","id":"a36cd46b-50c2-464d-a5a4-bfdd989a48d6","issue":"2","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"a72fe36f-275b-48e6-9ebb-7f00a617dc9d","keyword":"苯基丁酸","originalKeyword":"苯基丁酸"},{"id":"a4a44539-8c88-4346-91a4-019d6c951751","keyword":"萘满酮","originalKeyword":"萘满酮"},{"id":"9abf5898-6838-4059-844d-2a2a86e9bb13","keyword":"分子内Friedel-Crafts","originalKeyword":"分子内Friedel-Crafts"},{"id":"8d055735-2308-49a3-9862-cb9f5c7a9841","keyword":"沸石H-BEA","originalKeyword":"沸石H-BEA"}],"language":"zh","publisherId":"yyhx201102013","title":"改性沸石H-BEA催化4-苯基丁酸分子内付克反应合成1-萘满酮","volume":"28","year":"2011"},{"abstractinfo":"岩爆是一种世界性的地质灾害,极大地威胁着矿山施工人员和设备的安全.目前,国内外在岩爆方面做了大量的研究工作,但是,由于岩爆问题极为复杂,还没有成熟的理论和方法.针对岩爆定义、岩爆发生机理、岩爆预测预报、岩爆控制的研究现状,进行了归纳分析与评述,并在某些方面提出了新的见解.","authors":[{"authorName":"刘卫东","id":"794ba667-c65f-4c14-b674-50fade3015cf","originalAuthorName":"刘卫东"},{"authorName":"李角群","id":"8bcda317-9c89-476f-8470-3587db468039","originalAuthorName":"李角群"},{"authorName":"李磊","id":"1b0c079f-b622-4e5b-97a0-d99194ea9bbc","originalAuthorName":"李磊"}],"doi":"10.3969/j.issn.1001-1277.2010.01.007","fpage":"26","id":"78c9471a-2a55-422d-92bd-0ac6fa7b4868","issue":"1","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"4c195465-ed84-4338-8160-9b3d95ce6d76","keyword":"岩爆","originalKeyword":"岩爆"},{"id":"671204bc-3f7f-49c4-8181-b104fd4732c3","keyword":"岩爆发生机理","originalKeyword":"岩爆发生机理"},{"id":"ce1fcc6b-a971-4208-a83b-9eba548f108c","keyword":"岩爆预测预报","originalKeyword":"岩爆预测预报"},{"id":"3dfac183-ad8c-41fd-b37a-42ca3a8f6ac9","keyword":"岩爆控制","originalKeyword":"岩爆控制"}],"language":"zh","publisherId":"huangj201001007","title":"岩爆研究现状综述","volume":"31","year":"2010"},{"abstractinfo":"郭家埠地区位于招平断裂中段,该地区围岩蚀变发育,蚀变分带明显。选取切穿该区蚀变带的1012剖面,分析其围岩蚀变特征,自断裂中心向两侧蚀变岩依次为:黄铁绢英岩、绢英岩和钾化花岗岩,蚀变强度依次减弱。蚀变岩地球化学分析显示:随着蚀变的增强, Si、K、Fe增加, Na减少,说明蚀变是一种硅化、钾化、而去Na的过程;稀土元素总量整体呈降低的趋势。钾化花岗岩轻重稀土元素分异程度较强,轻稀土相对富集,而绢英岩重稀土富集;Rb、Ba含量总体随着矿化强度的增强而增加,高场强元素含量在钾化蚀变阶段和黄铁绢英岩化阶段减少,在绢英岩化阶段增加。通过探讨蚀变岩与找矿的关系,认为黄铁矿化、绢云母化、钾长石化等蚀变是找矿的直接标志。郭家埠地区蚀变岩带规模大,蚀变强,钻孔资料表明深部蚀变岩Au含量已达边界品位,加之周边地区成矿条件较好,初步推测郭家埠地区成矿前景良好。","authors":[{"authorName":"王玺","id":"f13be2d9-186a-4e51-9faa-5bdfaab06829","originalAuthorName":"王玺"},{"authorName":"胡宝群","id":"c331c4b7-25cf-44eb-8976-6ed26ef4ac19","originalAuthorName":"胡宝群"},{"authorName":"张志航","id":"fa25c980-39d9-4e60-8b9c-b678452b8022","originalAuthorName":"张志航"},{"authorName":"王志强","id":"19d38f08-66d5-40e8-95a0-09927b137f85","originalAuthorName":"王志强"},{"authorName":"顾延景","id":"81daa1b1-12d9-4927-afef-ca381852978f","originalAuthorName":"顾延景"},{"authorName":"申玉科","id":"f425c023-7421-4125-9f9e-77ed1c0c529f","originalAuthorName":"申玉科"},{"authorName":"郭涛","id":"85163ded-3a81-4095-951c-5629a8e88bb3","originalAuthorName":"郭涛"},{"authorName":"吕古贤","id":"3ab1be77-a2d7-4060-95a0-bbedf7d6aeed","originalAuthorName":"吕古贤"}],"doi":"10.11792/hj20141104","fpage":"14","id":"f5e83ab5-d009-4999-8ace-3c068657a3e0","issue":"11","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"c1a1169a-4b51-40d9-9957-2ad254c05758","keyword":"郭家埠地区","originalKeyword":"郭家埠地区"},{"id":"cb274d57-aba9-4441-aec2-d5ab85d9e5a1","keyword":"招平断裂","originalKeyword":"招平断裂"},{"id":"2f926037-55ed-4a2b-a9ac-77a49110e4a0","keyword":"蚀变岩带","originalKeyword":"蚀变岩带"},{"id":"7693266c-2f93-4de9-99fb-87942c75ef01","keyword":"地球化学","originalKeyword":"地球化学"},{"id":"78e94c23-bb7b-4ce0-9291-bf3610e78c88","keyword":"找矿意义","originalKeyword":"找矿意义"}],"language":"zh","publisherId":"huangj201411004","title":"招平断裂郭家埠地区蚀变岩特征及找矿意义","volume":"","year":"2014"},{"abstractinfo":"为了解释山西石英岩并非所谓的胶结硅石,采用场发射扫描电镜-能谱仪和XRD研究了原矿石的石英晶体大小、分布和杂质特征以及煅烧后的显微结构.结果表明,山西石英岩系显晶和微晶石英构成的复合型石英岩,白色区域为自形石英晶体;红色区域含有纳米尺度的石英晶体、伴生矿物球状和针状铁、锰氧化物.经1 450℃保温3h煅烧后的试样约有30%转化为方石英和产生液相分离现象.","authors":[{"authorName":"高振昕","id":"1294aae2-dea0-412e-8543-64c73b25dd27","originalAuthorName":"高振昕"},{"authorName":"张巍","id":"172dfe48-fdc0-4bbd-8b29-ecc81a60fcad","originalAuthorName":"张巍"},{"authorName":"郑小平","id":"d11741bb-41a8-45eb-9248-a2c7031f89f4","originalAuthorName":"郑小平"},{"authorName":"李君霞","id":"e52a950b-d759-4385-8027-964b83e4bf2b","originalAuthorName":"李君霞"},{"authorName":"傅秋华","id":"2fe0a536-437b-4308-ad31-714247754e8d","originalAuthorName":"傅秋华"}],"doi":"10.3969/j.issn.1001-1935.2016.04.020","fpage":"315","id":"f1fcd7ae-bbdd-48fd-930d-2f8c25d803da","issue":"4","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"1fec2e05-0910-4aae-89f9-5063c7499f30","keyword":"微晶石英","originalKeyword":"微晶石英"},{"id":"7bc9b179-a994-4475-8796-d77336bdbbac","keyword":"石英自形晶","originalKeyword":"石英自形晶"},{"id":"f4edf320-a251-499b-8de4-88bcf26d55d9","keyword":"复合型石英岩","originalKeyword":"复合型石英岩"},{"id":"acf71a71-d5a3-4fa0-ad13-ce6396b910c0","keyword":"相变","originalKeyword":"相变"},{"id":"2d182227-22b6-4bba-81c9-23a80217aac7","keyword":"液相分离","originalKeyword":"液相分离"}],"language":"zh","publisherId":"nhcl201604020","title":"山西石英岩的结晶特征与加热相变","volume":"50","year":"2016"},{"abstractinfo":"中国深井岩爆课题研究已经有近30年的历史,但一般都停留在理论性研究方面,解决岩爆防治的实用性研究工作却没有太多成果.针对岩爆类型划分、形成机理、发生判据、岩爆预测与防治的研究现状,进行了归纳分析和评述.","authors":[{"authorName":"郭树林","id":"ba9d6e81-9ca4-43dd-932f-30c0ea7a39d5","originalAuthorName":"郭树林"},{"authorName":"姚香","id":"d7bb5964-1475-4972-9f58-7c63d288a12f","originalAuthorName":"姚香"},{"authorName":"严鹏","id":"248d6530-7986-4e7f-a6b9-cddb7caa16ce","originalAuthorName":"严鹏"},{"authorName":"许卫军","id":"da7521b5-9292-45a9-908b-fc1a8b8d0708","originalAuthorName":"许卫军"},{"authorName":"李晓明","id":"c3a5a75d-b1d0-46a4-b096-00a7ab66d5a1","originalAuthorName":"李晓明"}],"doi":"10.3969/j.issn.1001-1277.2009.01.006","fpage":"18","id":"d9f96b61-377f-4835-80a6-1fabbbefa351","issue":"1","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"52cc1191-a273-4c1e-b380-257a43021987","keyword":"深井岩爆","originalKeyword":"深井岩爆"},{"id":"0877954d-415f-4604-947a-bffbbfe9291d","keyword":"岩爆类型","originalKeyword":"岩爆类型"},{"id":"874390c5-195d-492c-b648-b7f073dd4159","keyword":"岩爆判据","originalKeyword":"岩爆判据"},{"id":"41c5f135-0051-465a-9344-f9f4130af1ca","keyword":"岩爆预测与防治","originalKeyword":"岩爆预测与防治"}],"language":"zh","publisherId":"huangj200901006","title":"中国深井岩爆研究现状评述","volume":"30","year":"2009"},{"abstractinfo":"以乌江流域石灰岩、白云质灰岩、白云岩、硅质岩、页岩和砂岩等沉积岩的13条风化剖面为对象,运用R型分层聚类分析和质量平衡计算方法,研究了这些岩石风化过程中稀土元素(REE)的富集与释放及其对植物生长和河水REE分布的影响,目的是为河水物质来源研究和为农业生产提供依据. 结果表明: (1) 乌江流域石灰土中REE的富集程度显著高于各自母岩、黄壤、上陆壳(UCC)、中国土壤(CS)和世界土壤(WS);(2) 沉积岩风化过程中REE的富集特征和机制可能与母岩中REE分布特征以及风化剖面中有机质、铁(氢)氧化物和粘土矿物的吸附有关;(3) 沉积岩风化过程中释放的REE可为植物吸收利用;(4) 石灰岩等沉积岩风化过程中REE和Fe等元素的释放对河水溶解态REE的分布有重要影响.","authors":[{"authorName":"宋照亮","id":"0968332d-805b-4cf3-ade1-0b1e618673d0","originalAuthorName":"宋照亮"},{"authorName":"刘丛强","id":"b8cb46dc-710a-4ddc-b35a-4fab20c53f5c","originalAuthorName":"刘丛强"},{"authorName":"韩贵琳","id":"6e7c20d1-583a-46d5-aab7-a2a27fc7872b","originalAuthorName":"韩贵琳"},{"authorName":"王中良","id":"332f3deb-9de1-44b2-93ea-a033dbb86a6b","originalAuthorName":"王中良"},{"authorName":"朱兆洲","id":"ba860b4f-c087-48db-8c5c-368436706b8b","originalAuthorName":"朱兆洲"},{"authorName":"杨成","id":"cb81a7e4-2a51-4310-a68a-80cc6363cb27","originalAuthorName":"杨成"}],"doi":"","fpage":"344","id":"ebe622da-7242-4595-b121-f9398c24880f","issue":"3","journal":{"abbrevTitle":"ZGXTXB","coverImgSrc":"journal/img/cover/ZGXTXB.jpg","id":"86","issnPpub":"1000-4343","publisherId":"ZGXTXB","title":"中国稀土学报"},"keywords":[{"id":"69521583-ba64-43ab-8fbc-f47da8111ffe","keyword":"富集","originalKeyword":"富集"},{"id":"10ad99aa-1cf4-449d-9ab6-25a6a8412b12","keyword":"释放","originalKeyword":"释放"},{"id":"d3d113ea-66ff-4dfd-9377-a56240745feb","keyword":"风化","originalKeyword":"风化"},{"id":"17c389f9-a249-431d-a2e7-3c38aeb122a5","keyword":"沉积岩","originalKeyword":"沉积岩"},{"id":"467ae3e5-afc3-47d6-8a1c-d0db45383c57","keyword":"稀土","originalKeyword":"稀土"}],"language":"zh","publisherId":"zgxtxb200603017","title":"乌江流域沉积岩风化过程中稀土元素的富集与释放","volume":"24","year":"2006"},{"abstractinfo":"为了改善软岩遇水软化的特性,采用化学改性、水泥改性以及复合改性的处理方法从微观上改变软岩的结构,通过静态水润湿角实验、膨胀率实验、崩解性实验和直接剪切实验得到了改性前后软岩物理力学性质变化规律,并从微观上分析改性机理.结果表明:复合改性相对单一改性能够更好的改善软岩遇水软化的特性;复合改性后软岩的润湿角由3.58°提高到109.48°,使软岩由亲水性转变为憎水性;膨胀率由改性前的16.61%降为2.42%;软岩由强崩解性转变为弱崩解性;复合改性后软岩的抗剪强度变化明显,粘聚力由117.2 kPa增加到363.8 kPa,内摩擦角由24.4°提高到44.3°,分别提高了210.4%、81.6%;复合改性从微观上改变了软岩的结构,提高了颗粒间的胶结作用力,并在颗粒表面形成一层憎水膜.","authors":[{"authorName":"王来贵","id":"5b9062c9-b331-4323-af56-9458958c7c73","originalAuthorName":"王来贵"},{"authorName":"张鹏","id":"3af14208-04b0-4a00-bfeb-e5d1beb5555f","originalAuthorName":"张鹏"},{"authorName":"杨建林","id":"0c7c2805-9397-432c-86ae-bb099d560240","originalAuthorName":"杨建林"},{"authorName":"李喜林","id":"072dd77b-f3f8-4ba0-bd54-99f853d07c36","originalAuthorName":"李喜林"}],"doi":"","fpage":"99","id":"d3d8875a-466b-4070-9b71-75e02f526d0e","issue":"1","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"68bfba8c-8b4e-4afe-b8cd-b4543371c320","keyword":"软岩","originalKeyword":"软岩"},{"id":"2a64a3f5-b3ed-4937-9349-21265dfac89e","keyword":"复合改性","originalKeyword":"复合改性"},{"id":"4292b1f8-70f9-4161-9791-021954e860a1","keyword":"润湿角","originalKeyword":"润湿角"},{"id":"31343226-103a-461e-a44b-82ad444f9280","keyword":"崩解性","originalKeyword":"崩解性"},{"id":"cda06295-ff5e-4e45-abc5-003884a1e8ce","keyword":"抗剪强度","originalKeyword":"抗剪强度"}],"language":"zh","publisherId":"gsytb201501018","title":"软岩改性及其微观机理研究","volume":"34","year":"2015"}],"totalpage":1173,"totalrecord":11725}