{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"在有源发光玻璃的制备过程中,通常需要掺杂微量元素,用于改善玻璃的发光性能,因此在生产过程中进行快速检测非常重要。本实验针对激光诱导击穿光谱技术(LIBS)分析玻璃中微量元素灵敏度不足的问题,利用激光诱导荧光辅助激光诱导击穿光谱技术(LIBS-LIF)检测了玻璃中3种微量元素Yb, Al和P。使用波长可调谐激光激发等离子体中的Yb+离子、Al原子和P原子,并对这3种粒子在激光诱导荧光中的跃迁过程进行了分析。结果表明,通过激光诱导荧光辅助激光诱导击穿光谱技术,Yb+离子、Al原子和P原子的光谱强度分别增强了23, 50和8倍,大幅度提高了LIBS分析的灵敏度。","authors":[{"authorName":"李嘉铭","id":"53cfa9e8-70ee-49dd-8574-f05a9df2d60f","originalAuthorName":"李嘉铭"},{"authorName":"褚应波","id":"3db98cd2-807a-4f8e-98c0-64df3f710a04","originalAuthorName":"褚应波"},{"authorName":"赵楠","id":"221202ae-ad9a-49d6-a6e2-b2d86ce3f8b3","originalAuthorName":"赵楠"},{"authorName":"周冉","id":"3a2ea2ce-7a2f-42ee-a471-6fdbf16a9a44","originalAuthorName":"周冉"},{"authorName":"易荣兴","id":"436ed17d-92ad-495e-9371-9473111278f7","originalAuthorName":"易荣兴"},{"authorName":"郭连波","id":"3eb1d70d-e623-46e8-90bc-e1609bdcd8dc","originalAuthorName":"郭连波"},{"authorName":"李进延","id":"4f9afe7d-2215-4046-81b5-289685599edf","originalAuthorName":"李进延"},{"authorName":"李祥友","id":"edeeffca-8817-4b5a-8ac3-7c78d77573c7","originalAuthorName":"李祥友"},{"authorName":"曾晓雁","id":"48bf39c6-b185-4921-a6b4-82fad0efec54","originalAuthorName":"曾晓雁"},{"authorName":"陆永枫","id":"e36a55d4-88cb-4e65-8177-70d7bc40c5d2","originalAuthorName":"陆永枫"}],"categoryName":"研究报告","doi":"10.11895/j.issn.0253-3820.160134","fpage":"1042","id":"f2ae13b8-a643-401f-870f-cc600310da3f","issue":"7","journal":{"abbrevTitle":"FXHX","coverImgSrc":"journal/img/cover/FXHX.jpg","id":"23","issnPpub":"1872-2040","publisherId":"FXHX","title":"分析化学"},"keywords":[{"id":"78eab54f-13be-4144-87b8-5c3f3f3d91fe","keyword":"激光诱导击穿光谱","originalKeyword":"激光诱导击穿光谱"},{"id":"c442d34f-19ff-4788-afe2-defcc249a2ad","keyword":"激光诱导荧光","originalKeyword":"激光诱导荧光"},{"id":"76735115-8ceb-4e74-8c2a-8bbedacd3fb3","keyword":"玻璃","originalKeyword":"玻璃"},{"id":"388c9c21-9ef8-4db9-8005-981b2f73d3fe","keyword":"微量元素","originalKeyword":"微量元素"}],"language":"zh","publisherId":"fxhx-44-7-1042","title":"激光诱导荧光辅助激光诱导击穿光谱检测有源发光玻璃中的微量元素","volume":"44","year":"2016"},{"abstractinfo":"研究长波长InAsSb半导体材料在退火处理前、后,傅里叶变换红外(FTIR)透射光谱、组份元素In、Sb和As在外延层中的分布以及电学性质的变化.用熔体外延(ME)技术,在InAs衬底上生长InAs0.05Sb0.95外延层,外延层的厚度达到100 pm.在350℃下,在氢气氛中对样品进行了11h的退火.测量结果表明,退火处理使InAsSb样品的电子迁移率从300 K下的43600 cm2/(V·s)提高到77 K下的48300 cm2/(V·s),材料的电学性能及元素分布均匀性得到了明显改善.","authors":[{"authorName":"高玉竹","id":"a7a236d3-1078-4ba2-8c44-fed880507506","originalAuthorName":"高玉竹"},{"authorName":"周冉","id":"35bfca85-b960-4e0d-ad7d-0718746d998a","originalAuthorName":"周冉"},{"authorName":"龚秀英","id":"3f92a5cd-0691-4eec-8485-2f35a5cd4796","originalAuthorName":"龚秀英"},{"authorName":"杜传兴","id":"b2f61520-c942-4e36-b911-3a3c4555a675","originalAuthorName":"杜传兴"}],"doi":"","fpage":"11","id":"6d49b4c3-f0a0-4ac3-885a-e9bad5ab8c5f","issue":"12","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"35370892-bc14-4e1b-be77-0d1ca5e160b2","keyword":"InAsSb","originalKeyword":"InAsSb"},{"id":"b39bd183-cb1b-457a-84ff-d502484f1fc2","keyword":"退火处理","originalKeyword":"退火处理"},{"id":"8dc1720a-d79c-4fda-b1e6-67185fe95e59","keyword":"元素分布","originalKeyword":"元素分布"},{"id":"c8ecc61d-4f63-4059-a26e-86e45f43ebea","keyword":"电学性质","originalKeyword":"电学性质"}],"language":"zh","publisherId":"jsrclxb201412003","title":"退火处理对长波长InAsSb材料电学性能的影响","volume":"35","year":"2014"},{"abstractinfo":"在303~393 K 温度范围内,采用变温傅里叶变换衰减全反射红外光谱技术(ATR-FTIR)研究了二甲基硅油的一维红外光谱、二阶导数红外光谱、四阶导数红外光谱和去卷积红外光谱。实验发现,在1800~600 cm-1范围内,二甲基硅油主要存在 CH 3伸缩振动模式(νCH3)、CH 3变形振动模式(δCH3)、CH 3摇摆振动模式(ρCH3)、Si-O伸缩振动模式(νSi-O )和 Si-C 伸缩振动式(νSi-C )等5种红外吸收模式,其中782 cm-1和789 cm-1处的红外吸收峰归属于二甲基硅油νSi-C 。以二甲基硅油νSi-C 为研究对象,进一步开展相关二维红外光谱的研究。结果发现,随着测定温度的升高,二甲基硅油νSi-C 红外吸收强度的变化快慢顺序为:789 cm-1>782 cm-1。本项研究拓展了 ATR-FTIR 技术在二甲基硅油热变性方面的研究范围。","authors":[{"authorName":"常明","id":"6822d81c-3a3f-4639-bde6-046e535803b4","originalAuthorName":"常明"},{"authorName":"郧海丽","id":"2ce7a8b6-c39a-4355-8371-05cb6a2ef72d","originalAuthorName":"郧海丽"},{"authorName":"李中秋","id":"6c918ed5-6e25-4750-844d-db0f12f146d8","originalAuthorName":"李中秋"},{"authorName":"周冉","id":"258873c7-424d-473f-9e29-25989650e809","originalAuthorName":"周冉"},{"authorName":"张美娟","id":"2e3c88f2-7d37-410c-be18-558136d1c530","originalAuthorName":"张美娟"},{"authorName":"于宏伟","id":"c85a096e-1172-4105-81b3-a57e8b7177d9","originalAuthorName":"于宏伟"}],"doi":"10.11896/j.issn.1005-023X.2016.04.020","fpage":"81","id":"5f85c6e7-589f-4fd6-87cb-a955d21afdc6","issue":"4","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"ca506957-6e57-4815-9f64-2f872a95c78f","keyword":"一维红外光谱","originalKeyword":"一维红外光谱"},{"id":"bee4ec5a-79c7-4f9d-a1e4-ee2360df5a4b","keyword":"二阶导数红外光谱","originalKeyword":"二阶导数红外光谱"},{"id":"33798968-86ed-4b9c-b3c2-1e3275cac650","keyword":"四阶导数红外光谱","originalKeyword":"四阶导数红外光谱"},{"id":"da708039-bb8a-48e9-89c0-315e5df01543","keyword":"去卷积红外光谱","originalKeyword":"去卷积红外光谱"},{"id":"5e0f9bec-5177-423a-a052-a1ddc18ae09e","keyword":"二维红外光谱","originalKeyword":"二维红外光谱"},{"id":"f1b2e758-3097-4736-8828-f2936e48b94f","keyword":"二甲基硅油","originalKeyword":"二甲基硅油"},{"id":"7539509e-b1c3-4ae3-ac39-882932373657","keyword":"热变性","originalKeyword":"热变性"}],"language":"zh","publisherId":"cldb201604021","title":"二甲基硅油 C-Si 伸缩振动模式红外光谱研究?","volume":"30","year":"2016"},{"abstractinfo":"论述了超高周疲劳研究的背景及意义,总结了近年来超高周疲劳的研究成果包括超高周疲劳的典型特征如S-N曲线、裂纹起源、起裂机理、影响超高周疲劳行为的因素等,介绍了超高周疲劳的常用实验手段,提出了今后超高周疲劳研究的课题.","authors":[{"authorName":"关昕","id":"0ac19842-8b56-426f-8905-2388e7a25b47","originalAuthorName":"关昕"},{"authorName":"孟延军","id":"58d24d51-0717-4882-bcd8-6c2afb28dd18","originalAuthorName":"孟延军"}],"doi":"","fpage":"58","id":"e4637bac-c1ab-4be4-843c-0b2fc9d06e80","issue":"1","journal":{"abbrevTitle":"GTYJ","coverImgSrc":"journal/img/cover/GTYJ.jpg","id":"29","issnPpub":"1001-1447","publisherId":"GTYJ","title":"钢铁研究"},"keywords":[{"id":"fc7ed857-e1c0-43de-9636-ad6114993fd8","keyword":"超高周疲劳","originalKeyword":"超高周疲劳"},{"id":"10ad3e45-0a4e-4eb7-9a69-588ccacf882e","keyword":"S-N曲线","originalKeyword":"S-N曲线"},{"id":"8217367e-ada6-4836-a546-fc39c08018ab","keyword":"疲劳裂纹萌生","originalKeyword":"疲劳裂纹萌生"},{"id":"6ef2ce57-4acd-4632-a6d5-c41726a86dba","keyword":"超声疲劳实验","originalKeyword":"超声疲劳实验"}],"language":"zh","publisherId":"gtyj200901018","title":"超高周疲劳的研究进展","volume":"37","year":"2009"},{"abstractinfo":"研究了不同温度下TC17合金低周疲劳性能和断口形貌,确定了不同温度下合金低周疲劳曲线的数学表达式,分析了合金棒材低周疲劳断口形貌特征.","authors":[{"authorName":"张翥","id":"08f7ef9f-76b4-43b4-a22c-5e4c97332d9c","originalAuthorName":"张翥"},{"authorName":"惠松骁","id":"95300b8b-74b1-4a44-9a99-d5da348d9ace","originalAuthorName":"惠松骁"},{"authorName":"路纲","id":"b4d1bce2-6620-453b-ab68-5919f79cf6a5","originalAuthorName":"路纲"}],"doi":"10.3321/j.issn:0412-1961.2002.z1.079","fpage":"267","id":"5245b7d9-ad01-42aa-96ae-965e18ec3e68","issue":"z1","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"1ab386e7-9137-42ac-932c-aad72f085293","keyword":"低周疲劳","originalKeyword":"低周疲劳"},{"id":"707dc835-b982-4d1a-8bac-aaf2daa1a891","keyword":"断口形貌","originalKeyword":"断口形貌"},{"id":"84cd2432-b6a6-470a-93bc-ec98a918a3b5","keyword":"TC17钛合金","originalKeyword":"TC17钛合金"}],"language":"zh","publisherId":"jsxb2002z1079","title":"TC17合金低周疲劳性能与低周疲劳断口形貌","volume":"38","year":"2002"},{"abstractinfo":"对高周疲劳和低周疲劳寿命预测模型进行了研究,提出了一种能够将高周疲劳和低周疲劳统一表征的能量形式参量.用统一的能量形式表征参量对高温合金GH141的760℃高周疲劳和低周疲劳数据进行处理,得到理想的能量-寿命方程.用1Cr11Ni2W2MoV钢500℃和粉末盘材料FGH95的600℃高温低周疲劳和高周疲劳数据对统一表征方法进行验证,验证结果表明,用能量形式的表征参量能够得到理想的能量-寿命方程.","authors":[{"authorName":"许超","id":"b736c564-a712-4cae-ba28-e1f545e3fbee","originalAuthorName":"许超"},{"authorName":"张国栋","id":"1c3a219e-8948-44a2-ac77-d7a1db019a04","originalAuthorName":"张国栋"},{"authorName":"苏彬","id":"115a0fbf-8817-41cd-8719-b1cf173341c4","originalAuthorName":"苏彬"}],"doi":"10.3969/j.issn.1001-4381.2007.08.016","fpage":"65","id":"90ae7451-07db-49d8-bc65-8529908ec2cb","issue":"8","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"fa75e230-7af7-47c8-af9d-3a42d6a0957a","keyword":"高周疲劳","originalKeyword":"高周疲劳"},{"id":"fff773bd-ef31-49d2-a540-5c0587429d8e","keyword":"低周疲劳","originalKeyword":"低周疲劳"},{"id":"7e70aa0a-f69e-49d8-90a4-c7e78e1e84d8","keyword":"寿命预测","originalKeyword":"寿命预测"},{"id":"120f5885-b123-425d-9772-e00834ea620b","keyword":"能量表征","originalKeyword":"能量表征"},{"id":"2778e939-7c24-4364-bc09-9b7d01d11edf","keyword":"高温合金","originalKeyword":"高温合金"}],"language":"zh","publisherId":"clgc200708016","title":"高周疲劳和低周疲劳统一的能量表征方法研究","volume":"","year":"2007"},{"abstractinfo":"分析了金属材料超高周疲劳断口形貌特征,介绍了基于Paris公式的裂纹扩展寿命预测模型和基于位错理论的疲劳裂纹萌生寿命预测模型,并结合前期有关金属材料超高周疲劳行为的试验数据,对2种预测模型的误差进行分析.结果表明,基于位错理论的寿命预测模型较为准确;而基于Paris公式的裂纹扩展寿命预测模型,其预测精度随着疲劳寿命的增加而降低,即材料组织缺陷萌生成为疲劳裂纹阶段占据疲劳寿命的绝大部分.在此基础上,提出了超高周疲劳寿命预测的研究方向:疲劳裂纹的萌生机制,特别是裂纹源表面萌生和内部萌生的竞争性机制;建立大样本数据,结合统计学方法,以工程构件的服役安全性和可靠性为基础,精确评价超高周疲劳寿命.","authors":[{"authorName":"宋亚南","id":"a3f57d8d-e363-4060-b147-c679dc69b63c","originalAuthorName":"宋亚南"},{"authorName":"徐滨士","id":"420e93bc-bf6e-4637-8f47-a160b0081bae","originalAuthorName":"徐滨士"},{"authorName":"王海斗","id":"1ae8eda4-1c15-49a9-a0ed-b1d1cf5cb8f5","originalAuthorName":"王海斗"},{"authorName":"张玉波","id":"0da25032-c90c-4137-940f-b98b99e26de9","originalAuthorName":"张玉波"},{"authorName":"邢志国","id":"ba8df743-30b2-407a-86a5-99f41317fc27","originalAuthorName":"邢志国"}],"doi":"","fpage":"1203","id":"46f40732-c34d-4b6a-a141-61b1d14d4a90","issue":"5","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"7079c771-b3ea-4858-b4d1-88626ec086d0","keyword":"超高周疲劳","originalKeyword":"超高周疲劳"},{"id":"b9d90b52-0489-4b16-bee0-245406d58655","keyword":"寿命预测","originalKeyword":"寿命预测"},{"id":"61dc2b24-54c7-4dc5-91cb-2ff12a621d81","keyword":"断口形貌","originalKeyword":"断口形貌"},{"id":"024a9c21-6f1c-4eda-b6ca-94c63c6a8825","keyword":"预测误差","originalKeyword":"预测误差"}],"language":"zh","publisherId":"xyjsclygc201605020","title":"超高周疲劳寿命预测方法探讨","volume":"45","year":"2016"},{"abstractinfo":"研究了铸造Ti-46.5Al-5Nb(原子分数,%)合金的高周疲劳行为.结果表明:Ti-46.5Al-5Nb合金具有较好的室温高周疲劳性能,其疲劳极限σ-1=510 MPa,与合金的断裂强度σb的比值为1.1.试样的形状对Ti-46.5Al-5Nb合金的室温拉伸强度影响较大,由此可以解释合金的疲劳强度与断裂强度的比值大于1.同时,用扫描电镜对合金的高周疲劳断口进行了观察.","authors":[{"authorName":"崔玉友","id":"6d2f0780-4421-413f-81a5-9a1c8faf287d","originalAuthorName":"崔玉友"},{"authorName":"杨锐","id":"21b4654d-c517-41f1-928b-985f08b14dad","originalAuthorName":"杨锐"}],"doi":"10.3321/j.issn:0412-1961.2002.z1.156","fpage":"497","id":"221aa2f4-ff60-4489-8628-d051a4e9f81f","issue":"z1","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"a0ac415a-bf8f-48df-9975-1cc4a8e17e5d","keyword":"Ti-46.5Al-5Nb合金","originalKeyword":"Ti-46.5Al-5Nb合金"},{"id":"da3c909c-c444-4c02-b29a-0fe1dd5bf4d5","keyword":"高周疲劳","originalKeyword":"高周疲劳"},{"id":"a237702e-9a16-4d44-a4d9-b5aab4e1ae36","keyword":"疲劳强度","originalKeyword":"疲劳强度"}],"language":"zh","publisherId":"jsxb2002z1156","title":"γ-TiAl合金的高周疲劳行为","volume":"38","year":"2002"},{"abstractinfo":"研究了缺口对TC21合金在不同温度高周和低周疲劳强度的影响.疲劳试样为光滑和V型缺口(Kt=3)2种试样,疲劳载荷为应力控制,循环应力比为0.1,高周疲劳实验温度为315 ℃,低周疲劳实验温度为室温及400℃.结果表明,在循环应力较低,缺口根部未塑性变形时,缺口使疲劳强度明显降低.循环应力升高使缺口根部产生塑性变形时,缺口对疲劳强度影响降低,当循环应力升高使光滑试样失稳时,缺口试样的疲劳强度高于光滑试样的疲劳强度.断口的SEM分析表明,缺口试样的疲劳裂纹在缺口根部萌生,即使高周疲劳裂纹源也是多个.","authors":[{"authorName":"虞忠良","id":"abd87fe1-a537-4e20-88b7-1a3c2e7e3b40","originalAuthorName":"虞忠良"},{"authorName":"赵永庆","id":"f78ead44-ed40-4d1d-9204-8b1b6d7081ef","originalAuthorName":"赵永庆"},{"authorName":"周廉","id":"ba405ddd-36d0-45b7-8983-0df416ab9461","originalAuthorName":"周廉"},{"authorName":"孙军","id":"8297e21f-dcea-438d-a80a-8c632bd1e6e4","originalAuthorName":"孙军"},{"authorName":"曲恒磊","id":"8a66dc34-2d0f-4090-a9a9-670102dd7230","originalAuthorName":"曲恒磊"}],"doi":"","fpage":"1523","id":"7955c589-1b59-47f4-bb9f-7d679859aaf0","issue":"9","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"4e50aa0a-33ef-4707-9e50-160f353e558d","keyword":"TC21合金","originalKeyword":"TC21合金"},{"id":"a8face36-e694-42c1-b806-a48bce001b58","keyword":"缺口","originalKeyword":"缺口"},{"id":"357af210-c719-4951-a799-b2d1eb8c2244","keyword":"高周疲劳","originalKeyword":"高周疲劳"},{"id":"d5432717-2565-4501-9190-8b125da0f26e","keyword":"低周疲劳","originalKeyword":"低周疲劳"}],"language":"zh","publisherId":"xyjsclygc200709004","title":"缺口对TC21合金高周和低周疲劳的影响","volume":"36","year":"2007"},{"abstractinfo":"采用超声疲劳试验技术对304不锈钢超高周疲劳性能进行了研究,并用扫描电镜对疲劳断口进行了分析.结果表明:304不锈钢在105~1010周次范围内的S-N曲线呈阶梯型下降趋势;在106~108周次出现平台,平台对应应力幅约为200 MPa;在平台应力以下,108周次以上超高周范围304不锈钢仍然发生疲劳断裂,不存在传统意义的疲劳强度;高周和超高周断裂试样的裂纹主要从试样表面萌生.","authors":[{"authorName":"张真源","id":"1e495d36-ab34-44b2-a4a5-6580018266bd","originalAuthorName":"张真源"},{"authorName":"王弘","id":"3559134c-d467-400b-9b4b-5cd0522d0fb4","originalAuthorName":"王弘"}],"doi":"10.3969/j.issn.1000-3738.2008.01.023","fpage":"79","id":"90adace5-2f7b-4536-ba84-f44523c00fd6","issue":"1","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"2cce6bfe-e507-4b4b-8748-bb4dd5c2d2c0","keyword":"超高周疲劳","originalKeyword":"超高周疲劳"},{"id":"f83ce778-6d3a-4685-8e82-4efce41a6ed9","keyword":"S-N曲线","originalKeyword":"S-N曲线"},{"id":"4070959a-3f57-4ace-89e9-00a024b40430","keyword":"304不锈钢","originalKeyword":"304不锈钢"}],"language":"zh","publisherId":"jxgccl200801023","title":"304不锈钢的超高周疲劳性能","volume":"32","year":"2008"}],"totalpage":152,"totalrecord":1515}