孙德林
,
余先纯
,
王荣
,
孙德彬
,
黄小西
材料热处理学报
为了了解烧结温度对木陶瓷基本性能的影响,将浸渍了环氧树脂的竹粉和竹纤维压制成复合板材,在不同的温度下烧结而得到环氧树脂/竹基木陶瓷。采用X射线衍射仪(XRD)、扫描电镜(SEM)等测试设备研究了烧结温对其物相变化、微观结构和力学性能等方面的影响。结果表明:竹基木陶瓷是由石墨微晶所构成的多孔碳素材料,较高的烧结温度能够改善其石墨化程度,但不能完全石墨化;在微观形态上表现为三维网络结构,同时部分保存了竹材的天然结构特征;其显气孔率随着烧结温度的增加而增加,表观密度则显示出相反的特征;抗弯和抗压强度在低温处随烧结温度的提高而增加,但在1200℃之后有降低的趋势。同时,摩擦系数则随着烧结温度的提高而明显下降。当烧结温度为1200℃左右时,环氧树脂-竹基木陶瓷具有较好的性能。
关键词:
竹基木陶瓷
,
烧结温度
,
物相构成
,
微观结构
,
力学性能
孙德林
,
郝晓峰
,
余先纯
,
陈新义
,
刘明辉
材料导报
doi:10.11896/j.issn.1005-023X.2015.20.011
以液化木材和炭粉制备的片状木材陶瓷为基体材料、以碳纤维为增强材料,通过结构设计和应力应变分析建立单元结构模型和应力应变模型.SEM观测结果显示:根据结构模型所制备的试件具有典型的层状结构,且在断裂过程中有利于裂纹偏转.力学行为分析表明:在脱粘之前,载荷主要集中在基体材料上,当发生脱粘后载荷则主要由增强材料承担.同时,由于层状结构和增强碳纤维的运用使得力学性能大幅度提高,尤其是断裂韧性得到明显改善,在一定程度上能够避免脆性断裂的发生.
关键词:
层状木材陶瓷
,
碳纤维增强
,
结构特征
,
力学行为分析
孙德林
,
余先纯
,
郝晓峰
,
陈新义
,
刘明辉
材料热处理学报
为了探讨烧结温度对纤维增强木材陶瓷界面结构的影响,用液化木材和炭粉制备片状基体材料,并通过酚醛树脂与碳纤维复合、在不同的烧结温度条件下制备碳纤维/层状木材陶瓷复合材料.利用扫描电镜(SEM)、场发射透射电镜(FETEM)、显微拉曼光谱(MRS)和X射线光电子能谱(XPS)等方法对其界面结构进行测试与表征.结果表明:在基体材料中,无定形碳与玻璃碳相互融合,界面区过渡自然,无明显界限;而在碳纤维与玻璃碳所形成的界面区中,较高的升温速度易形成为裂纹而呈现弱界面结合.同时,随着烧结温度的升高,界面区中有石墨微晶生成,但呈现出湍层结构.较高的烧结温度有助于脱除N、O、Na等元素,并有利于形成C-C结构.
关键词:
碳纤维/木材陶瓷
,
烧结温度
,
界面结构
,
影响因素
余先纯
,
任思静
,
郝晓峰
,
陈新义
,
刘明辉
,
孙德林
材料热处理学报
为了提升木材陶瓷的力学性能,用液化木材、炭粉和碳纤维等制备增强型层状结构木材陶瓷.探讨了烧结温度、液化木材用量等因素对其结构和力学性能的影响.结果表明,增强型层状木材陶瓷层状结构清晰,摩擦性能良好,且在微观上部分保持了木材天然的孔隙结构特征.同时,增强碳纤维和层状结构的运用能够获得较高强度与较好韧性.当烧结温度为1100℃、炭粉与液化木材质量比为1:0.75、胶合压力为3 MPa时,其抗弯强度、弹性模量、断裂韧性分别达到了53.90 MPa、2.58 GPa和1.69 MPa·m1/2,与普通木材陶瓷相比均有大幅度提高.
关键词:
液化木材
,
木材陶瓷
,
层状结构
,
碳纤维增强
余先纯
,
孙德林
,
郝晓峰
,
陈新义
,
丁山
材料热处理学报
doi:10.13289/j.issn.1009-6264.2017-0054
以松木粉、液化木材和ZnCl2为原料制备木材陶瓷,采用低温氮吸附法和扫描电镜(SEM)检测与评价烧结工艺对木材陶瓷孔隙结构的影响.SEM观测显示:木材陶瓷中多种孔隙结构并存,且木材的天然结构得以部分保存.低温氮吸附法检测表明:孔隙结构为H3型,以孔径为2.3 ~4.5 nm左右的介孔为主.烧结温度、升温速度和保温烧结时间等因素对孔隙结构有较大的影响.其比表面积随着烧结温度的升高而增加,但在高温区减小,而平均孔径则随烧结温度的升高表现为先减小后增加的趋势.1300℃、保温烧结30 min木材陶瓷的比表面积和平均孔径分别为364.2 m2·g-1和2.473 nm.
关键词:
木材陶瓷
,
烧结工艺
,
孔隙结构
,
影响因素
孙德林
,
余先纯
,
孙德彬
材料热处理学报
为了研究烧结温度与木材陶瓷耐磨性之间的关系,以杨木粉为基材,用苯酚和浓硫酸为液化剂和催化剂制备液化木材基木材陶瓷,探讨不同烧结温度对其耐磨性的影响.结果表明,在1200℃之前,摩擦力、摩擦系数和磨耗量等参数随烧结温度的增加而大幅度降低,但在更高温度时下降趋势明显减缓并趋于平稳,且磨耗量在1600℃之后有上升的趋势,且高温烧结试件的摩擦面明显比低温试件的光滑;较高烧结温度能够改善木材陶瓷的耐磨性,当烧结温度在1200 ~ 1400 ℃之间时其耐磨性良好,且湿磨条件下木材陶瓷的耐磨性明显优于干磨.
关键词:
液化木材
,
木材陶瓷
,
烧结温度
,
耐磨性