{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"基于剪切功率的耗散机理,提出了一种计算振动剪切流场中聚合物熔体动态黏度的粘性耗散法,并建立了理论模型.运用粘性耗散法,计算了简单振动剪切流场中Maxwell流体的动态黏度,得到了与传统方法相一致的结果,从而验证了理论模型的正确性.通过讨论振动叠加流场中Maxwell流体的动态黏度,分析了粘性耗散法的应用局限性.最后,通过动态流变实验,发现粘性耗散法对于小振幅范围的振动剪切流具有较好的预测能力.","authors":[{"authorName":"蔡永洪","id":"5778fddd-65a0-4f76-8ac1-71825ccce640","originalAuthorName":"蔡永洪"},{"authorName":"孙晓辉","id":"00d7b4c9-eeba-424e-b762-f557ce497c7b","originalAuthorName":"孙晓辉"},{"authorName":"瞿金平","id":"d35e5495-7a32-4dff-b764-a478c5130743","originalAuthorName":"瞿金平"}],"doi":"","fpage":"168","id":"98a1f24b-be72-4129-ba2f-e659e60f892e","issue":"5","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"4550ee42-1b15-4d80-b781-66903ca0f5e6","keyword":"粘性耗散","originalKeyword":"粘性耗散"},{"id":"fd3ef084-18ee-44a3-b050-ad562b03dd2f","keyword":"动态黏度","originalKeyword":"动态黏度"},{"id":"fca2c96b-6166-4cae-9905-9415e5b99a9f","keyword":"粘弹流体","originalKeyword":"粘弹流体"}],"language":"zh","publisherId":"gfzclkxygc200905048","title":"一种基于粘性耗散的动态黏度计算方法","volume":"25","year":"2009"},{"abstractinfo":"研究了聚乳酸及其共聚物、共混物的流变特性.结果表明,随着分子量的增加,聚乳酸及其共聚物熔体的弹性模量G'、损耗模量G\"及动态黏度η*大幅度地提高,出现假固态行为;分子链柔性较好的共聚组分PEG的引入降低了共聚物熔体的G'、G\"及η*;聚合物分子量的多分散性导致聚合物熔体的流动出现了非终端效应;聚乳酸的引入使聚丙烯熔体的G'、G\"及η*都有所下降,马来酸酐接枝改性的聚丙烯的引入增大了共混物的G'、 G\"及η*.","authors":[{"authorName":"顾书英","id":"6ca48664-0ac2-4725-9768-02085fa7cb59","originalAuthorName":"顾书英"},{"authorName":"任杰","id":"9b7b4398-cbf1-4f37-a33c-b1f244b5d26a","originalAuthorName":"任杰"},{"authorName":"袁华","id":"507348a7-bec5-4f7f-bbc8-69a1437a5077","originalAuthorName":"袁华"}],"doi":"","fpage":"224","id":"f02d3b7b-1170-448a-86b6-a6ef10215892","issue":"4","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"7e9b37e2-44b7-4d6c-b040-45123f0fbcc5","keyword":"聚乳酸","originalKeyword":"聚乳酸"},{"id":"72aa4c26-2f75-42ba-a491-f19ec57681e5","keyword":"流变特性","originalKeyword":"流变特性"},{"id":"6d20a93d-e219-40fe-a802-010c45afa514","keyword":"弹性模量","originalKeyword":"弹性模量"},{"id":"34e7e4f1-6adc-4efe-bdf6-0977510e976a","keyword":"损耗模量","originalKeyword":"损耗模量"},{"id":"8e7c5e6e-900d-4b67-8037-f2bf894fab32","keyword":"动态黏度","originalKeyword":"动态黏度"}],"language":"zh","publisherId":"gfzclkxygc200504058","title":"聚乳酸及其共聚物、共混物的流变特性","volume":"21","year":"2005"},{"abstractinfo":"声子是介电固体中导热过程的主要载体,研究声子的黏性对正确预测纳米材料中的非傅里叶导热等现象有着重要意义.本文从热质理论出发,基于涨落耗散理论导出了声子气黏度的表达式:ηh =hv/3πλα,其中ηh表示声子气的黏度,va为声子平均频率,λ为声子波长,α为材料热扩散系数.预测了单晶硅在300 K时的声子气黏度,其参考值为4.8×10-9 Pa·s.并且与基于声子水动力学模型和气体动理论模型的声子气黏度结果进行比较,发现本文模型的结果比声子水动力学模型的结果大2个量级,而比动理论模型小5个量级.","authors":[{"authorName":"叶振强","id":"c6d49555-5452-47f3-8932-ceae44643bce","originalAuthorName":"叶振强"},{"authorName":"董源","id":"069cbd17-2077-47a6-b289-4eeb48d57b72","originalAuthorName":"董源"},{"authorName":"曹炳阳","id":"9882c960-9ef2-4ce0-bedb-ecadd3f4e663","originalAuthorName":"曹炳阳"},{"authorName":"过增元","id":"1751c5f0-9cbd-4333-a1e3-86e36f4df420","originalAuthorName":"过增元"}],"doi":"","fpage":"1637","id":"5db3bba4-4720-4637-bb8d-e05f0221cd89","issue":"8","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"19cc47af-3960-45cd-89b3-994cdb5f48c9","keyword":"声子气黏度","originalKeyword":"声子气黏度"},{"id":"26b917e3-6a90-4622-80a1-593003fe4aa8","keyword":"热质理论","originalKeyword":"热质理论"},{"id":"9c9be422-fbd3-4be3-bab9-224d5cc83947","keyword":"声子气扩散系数","originalKeyword":"声子气扩散系数"},{"id":"c865827d-3693-42db-ab9a-16ffaf3709b6","keyword":"声子态密度","originalKeyword":"声子态密度"}],"language":"zh","publisherId":"gcrwlxb201408038","title":"声子气的黏度","volume":"35","year":"2014"},{"abstractinfo":"基于一种新型黏度模型,并通过实验证明了该黏度模型的可行性。采用截面渐变收缩的拉伸流动实验,从实验和数值计算两方面分别研究了牛顿流体和非牛顿流体的剪切黏度和拉伸黏度。同时,从实际加工生产的角度出发,强调了聚合物实际加工过程中真实黏度的重要性,并提出黏度具有唯一性的原理。采用几种常见的商业流变仪,测试了相同材料的剪切黏度与拉伸黏度,通过比较发现,新的黏度测试方法具有一定的合理性,为开发大应变速率范围的、复合流动的流变仪研究提供了理论依据。","authors":[{"authorName":"林祥","id":"e192c962-0b56-4fca-9404-0f570567fac6","originalAuthorName":"林祥"},{"authorName":"任冬云","id":"11cbcbc7-4a76-4941-ad4d-6ba033c4391e","originalAuthorName":"任冬云"},{"authorName":"王奎升","id":"a9ac3eea-3702-4d79-a8ac-0ecc29a5ef5d","originalAuthorName":"王奎升"},{"authorName":"宋维宁","id":"dbdb842b-1291-4bb4-910c-a31cdf893556","originalAuthorName":"宋维宁"},{"authorName":"龚灯","id":"cb45c1e8-c1ec-4cc5-90f3-8a3eee5a73f0","originalAuthorName":"龚灯"},{"authorName":"王海军","id":"104d39c6-2f74-4401-bb3e-c07ee64ab81f","originalAuthorName":"王海军"}],"doi":"","fpage":"183","id":"b7d450ee-b03c-4cd8-858d-ca9a053ee1fa","issue":"10","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"d6980e90-fade-4e5a-acc2-c70cd741b7b7","keyword":"收缩流动","originalKeyword":"收缩流动"},{"id":"e371fde7-70fa-48ad-97b3-1cc45b37e9d1","keyword":"黏度","originalKeyword":"黏度"},{"id":"21f81cb5-4390-4b0c-856b-f89bf4279350","keyword":"黏弹性","originalKeyword":"黏弹性"},{"id":"be609c36-aeff-404f-9501-5086928b0a6d","keyword":"聚合物","originalKeyword":"聚合物"}],"language":"zh","publisherId":"gfzclkxygc201210045","title":"一种测试剪切黏度与拉伸黏度的方法","volume":"28","year":"2012"},{"abstractinfo":"研究了矿化度对HPAM(部分水解聚丙烯酰胺)溶液流变性的影响,测定了电渗析器处理前后的油田污水、淡水、浓水配制的HPAM溶液的流变性,浓水对HPAM流变性影响最大;通过流变曲线拟合,确定了流变参数,矿化度越高,稠度系数越小,幂律指数越大.探讨了阴阳离子对HPAM溶液黏度的影响,阴离子对HPAM溶液黏度降低无贡献,阳离子是引起HPAM溶液黏度损失的主要原因,应用双电层理论深入探讨了阳离子浓度、电荷数及阳离子半径对HPAM分子构型的影响.得出了阳离子对HPAM分子构型的影响规律.","authors":[{"authorName":"康万利","id":"100c60fc-6c3f-4ef7-8c53-be4564c27605","originalAuthorName":"康万利"},{"authorName":"孟令伟","id":"32e862c3-9a2e-47af-b46f-39a75663896c","originalAuthorName":"孟令伟"},{"authorName":"牛井岗","id":"54ba608a-10f0-4aa2-8551-981f7758ee10","originalAuthorName":"牛井岗"},{"authorName":"徐典平","id":"360b202a-a1b4-419c-b8d8-90b9bd7a2995","originalAuthorName":"徐典平"}],"doi":"","fpage":"175","id":"088d4e31-5751-4dc3-8aef-72460abea841","issue":"5","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"a41d05a6-cbbf-49e4-ba4c-efb6283252f0","keyword":"部分水解聚丙烯酰胺分子构型","originalKeyword":"部分水解聚丙烯酰胺分子构型"},{"id":"7c96f027-1ced-4e5a-9301-bbf87f0028c0","keyword":"矿化度","originalKeyword":"矿化度"},{"id":"145e2bc7-5fb6-4814-85dd-74ae71d24b2d","keyword":"阳离子","originalKeyword":"阳离子"},{"id":"9fce7ac7-c520-46f8-ba3f-96d5a8b5000e","keyword":"黏度","originalKeyword":"黏度"},{"id":"7b11e8a9-a59d-49fb-86be-688a76b5f07b","keyword":"双电层","originalKeyword":"双电层"}],"language":"zh","publisherId":"gfzclkxygc200605044","title":"矿化度影响HPAM溶液黏度机理","volume":"22","year":"2006"},{"abstractinfo":"麦卡菲利(R.S.McCaffery)关于MgO对炉渣黏度影响的研究是开拓性的,多年来一直是生产和研究炉渣的重要参考.但在wMgO>15%情况下,各炉渣成分改变对炉渣黏度没有影响的结论有缺陷.依据取自中国、日本、韩国、美国、澳大利亚、欧洲和前苏联63个炼铁厂125座高炉生产炉渣成分,分析炉渣碱度与wAl2O3/wMgO的相应关系,得到炉渣碱度与wAl2O3/wMgO使用比例,供生产和研究参考.","authors":[{"authorName":"刘云彩","id":"2f237439-4295-4a0d-b057-7dbb87643824","originalAuthorName":"刘云彩"}],"doi":"10.13228/j.boyuan.issn1006-9356.20150132","fpage":"2","id":"24e3a923-e01e-43df-a425-ffe5cbda52ef","issue":"1","journal":{"abbrevTitle":"ZGYJ","coverImgSrc":"journal/img/cover/ZGYJ.jpg","id":"87","issnPpub":"1006-9356","publisherId":"ZGYJ","title":"中国冶金"},"keywords":[{"id":"0d87333a-e366-4eec-8a10-25a4eed21fb0","keyword":"MgO对炉渣的作用","originalKeyword":"MgO对炉渣的作用"},{"id":"3936fa39-7ade-45d2-bf9d-4d38f34224cb","keyword":"炉渣碱度","originalKeyword":"炉渣碱度"},{"id":"5f796cd0-7269-4174-af4d-7aac159a8d86","keyword":"wAl2O3/wMgO","originalKeyword":"wAl2O3/wMgO"},{"id":"af367b4f-3f51-40c1-abd3-f16efd9349a8","keyword":"wMgO/wAl2O3","originalKeyword":"wMgO/wAl2O3"}],"language":"zh","publisherId":"zgyj201601001","title":"MgO对炉渣黏度的影响","volume":"26","year":"2016"},{"abstractinfo":"采用振动盘黏度计对制冷剂R143a的气相黏度进行了实验研究,温度范围为299~338 K、压力范围为0.1~2.69MPa,黏度测量的不确定度为±2.0%.利用得到的实验数据,拟合了R143a的气相黏度方程,黏度实验数据与方程的平均绝对偏差为0.20%,最大偏差为0.97%,可以满足工程应用.","authors":[{"authorName":"王晓坡","id":"8ba45614-ce4a-47ff-99f2-264d7ffaac8f","originalAuthorName":"王晓坡"},{"authorName":"吴江涛","id":"2cd68578-5b6c-4d45-af28-c7383b6238ef","originalAuthorName":"吴江涛"},{"authorName":"刘志刚","id":"6caafa21-4574-43f3-9449-e28af6f49b69","originalAuthorName":"刘志刚"}],"doi":"","fpage":"1455","id":"ed91c18b-391f-40a3-89cd-b95100ff1fa8","issue":"9","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"86dd379e-66dd-4068-9a66-ff286f1fda75","keyword":"气相黏度","originalKeyword":"气相黏度"},{"id":"9e2de24e-f9df-4ebe-9e8a-81bd810c7919","keyword":"振动盘黏度计","originalKeyword":"振动盘黏度计"},{"id":"76408bba-9494-4dfa-9b55-b1eb0716ffd7","keyword":"R143a","originalKeyword":"R143a"}],"language":"zh","publisherId":"gcrwlxb200909005","title":"R143a气相黏度的实验研究","volume":"30","year":"2009"},{"abstractinfo":"文章总结了液晶旋转黏度的几种测试方法,分析了其各自的优缺点.根据瞬态电流法得到了混合液晶的旋转黏度值,通过对目前正性液晶材料的△ε测试方法进行改良和优化得到了准确的混合液晶旋转黏度值.提出了单体液晶分子旋转黏度的拟合方法.测试了液晶的旋转黏度和介电常数随温度变化的趋势.总结了不同结构单体液晶旋转黏度和介电常数的关系.","authors":[{"authorName":"贵丽红","id":"d3257dd3-ff39-4d99-a02c-73c7a9aedbd7","originalAuthorName":"贵丽红"},{"authorName":"丰景义","id":"8c2c44fd-c18c-4b68-aee4-510fcb470cc1","originalAuthorName":"丰景义"},{"authorName":"史子谦","id":"fd75c4ee-d5fe-4d84-8ac9-afbfd3ed7f7a","originalAuthorName":"史子谦"},{"authorName":"刘宏改","id":"dc3dd5bf-0393-4f63-bae0-c3d02a7795de","originalAuthorName":"刘宏改"},{"authorName":"乔云霞","id":"e151d6f4-d6c8-4679-bcb0-9e0fab1d8b9c","originalAuthorName":"乔云霞"}],"doi":"10.3788/YJYXS20132804.0527","fpage":"527","id":"0121dd14-41a8-4574-a48b-f51863b230b1","issue":"4","journal":{"abbrevTitle":"YJYXS","coverImgSrc":"journal/img/cover/YJYXS.jpg","id":"72","issnPpub":"1007-2780","publisherId":"YJYXS","title":"液晶与显示 "},"keywords":[{"id":"b96993ce-0d37-4271-83a4-5ef4636e6cf8","keyword":"向列相液晶","originalKeyword":"向列相液晶"},{"id":"1656b8d6-8358-46b8-a95e-7b5fcc7a82f8","keyword":"旋转黏度","originalKeyword":"旋转黏度"},{"id":"6c38fe0f-5f69-4dfd-973d-9a781fce4d86","keyword":"介电各项异性","originalKeyword":"介电各项异性"}],"language":"zh","publisherId":"yjyxs201304010","title":"向列相液晶旋转黏度测试方法的研究","volume":"28","year":"2013"},{"abstractinfo":"为了阐明TiO2对炼铁高炉渣黏度的影响,用Brookfield DV-Ⅱ型黏度计对五元渣系CaO-SiO2-7.5%MgO-15 %Al2O3-TiO2 (w(CaO)/w(SiO2)=1.18)炉渣的黏度进行了测量.结果表明:在1 773K时,随着w(TiO2)的增加炉渣黏度降低;同时用傅里叶光谱仪分析炉渣结构发现,随着w(TiO2)的增加,[SiO4]4-四面体离子结构逐渐解聚,这是典型的碱性氧化物特征,表明TiO2可提供促进解聚的氧离子.","authors":[{"authorName":"赵满祥","id":"1fb961d6-fd5c-4b20-9779-9c32ad43fbad","originalAuthorName":"赵满祥"},{"authorName":"李明","id":"b0804c54-ca2e-44f9-b21a-4e4d511bd31a","originalAuthorName":"李明"},{"authorName":"马金芳","id":"d431c2af-7b3e-457b-a8c4-13236dce4b30","originalAuthorName":"马金芳"},{"authorName":"贾军民","id":"a08b53ab-e85d-4a84-bfaa-2bddcf1a4090","originalAuthorName":"贾军民"},{"authorName":"闵东俊","id":"307ff4f8-a1c7-4ab9-bcee-e9275ffdb174","originalAuthorName":"闵东俊"},{"authorName":"金完浩","id":"04e68022-14f8-488b-bfd1-204ea69c0eab","originalAuthorName":"金完浩"}],"doi":"","fpage":"1","id":"28c58435-9c1c-41ff-8227-133820936aef","issue":"1","journal":{"abbrevTitle":"GTYJ","coverImgSrc":"journal/img/cover/GTYJ.jpg","id":"29","issnPpub":"1001-1447","publisherId":"GTYJ","title":"钢铁研究"},"keywords":[{"id":"8a7f96d0-44ff-4164-89a2-6376ca315371","keyword":"高炉渣黏度","originalKeyword":"高炉渣黏度"},{"id":"4ffa8d1e-0896-4cc8-af57-9a6cdf5a96e0","keyword":"TiO2","originalKeyword":"TiO2"},{"id":"6c2d693e-fcbb-43ab-b644-96fdf2611131","keyword":"碱性氧化物","originalKeyword":"碱性氧化物"}],"language":"zh","publisherId":"gtyj201501001","title":"TiO2对高炉渣黏度的影响","volume":"43","year":"2015"},{"abstractinfo":"本文通过关联无量纲化剩余黏度与对比密度的关系,提出了一种推算常用制冷工质稠密流体黏度的维里型黏度状态方程.应用该方程只需已知该工质的临界参数、分子量和偏心因子即可完成计算,使得迁移性质的计算在热力学面上和平衡性质的计算保持了完整的一致性.本文通过上述方法计算了9种常用制冷工质的液相黏度,与实验数据比较显示,总平均偏差为2.36%,最大偏差为27.6%.","authors":[{"authorName":"薛榕","id":"bbf2eb6e-531e-4aae-8852-81f4ee9d3493","originalAuthorName":"薛榕"},{"authorName":"何茂刚","id":"1f55d61b-7979-4c1a-b87f-62c02ccffc3c","originalAuthorName":"何茂刚"},{"authorName":"张颖","id":"6bc4a2ee-d99f-4c40-8a66-50ba34974289","originalAuthorName":"张颖"},{"authorName":"杨亚晶","id":"dd4f5304-538d-4138-a7a8-618d7d7c86c0","originalAuthorName":"杨亚晶"}],"doi":"","fpage":"2003","id":"3f5c07e5-6689-4e88-9ee6-c93b2ddef2a3","issue":"12","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"cb076797-4297-4ff3-bb00-a18d9274f094","keyword":"维里型黏度状态方程","originalKeyword":"维里型黏度状态方程"},{"id":"05240001-d281-47a7-9b1f-30af19016a32","keyword":"黏度推箅","originalKeyword":"黏度推箅"},{"id":"ca36890a-6698-44bc-9806-b69e2a9bc976","keyword":"制冷工质","originalKeyword":"制冷工质"}],"language":"zh","publisherId":"gcrwlxb200812006","title":"常用制冷工质稠密流体的黏度推算方法","volume":"29","year":"2008"}],"totalpage":877,"totalrecord":8768}