{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"在计算溶质的梯度保留时间时,根据流动相在色谱柱内的分布规律,对溶质在色谱柱内的迁移距离和流动相梯度同时进行校正,从而建立了一种预测溶质线性梯度洗脱条件下保留时间的新方法.该方法在不同的仪器系统中,对于弱保留和强保留溶质在不同线性梯度洗脱条件下保留时间的预测,都具有良好的准确度.以15种氨基酸和8种苯的同系物为例,该方法对于弱保留溶质保留时间的预测,相对平均误差分别为3.70%和4.90%,远小于文献方法得到的结果(23.61%和31.16%);对于强保留溶质保留时间的预测,相对平均误差分别为0.21%和6.01%,略小于文献方法得到的结果(0.81%和6.69%).","authors":[{"authorName":"单亦初","id":"fa3a8928-ca49-4711-80d2-b229118e7c68","originalAuthorName":"单亦初"},{"authorName":"赵瑞环","id":"c8e5db7f-ec74-4289-b85b-0c1d783e29cf","originalAuthorName":"赵瑞环"},{"authorName":"张维冰","id":"9ec002fb-f5c0-4f01-9fac-c96e98a83c01","originalAuthorName":"张维冰"},{"authorName":"张玉奎","id":"66f22ae0-34fe-4d0b-95a6-869760de45dc","originalAuthorName":"张玉奎"}],"doi":"10.3321/j.issn:1000-8713.2001.03.020","fpage":"256","id":"d7c6263a-b4f2-49d1-a5cb-e8bdc0b3b4ab","issue":"3","journal":{"abbrevTitle":"SP","coverImgSrc":"journal/img/cover/SP.jpg","id":"58","issnPpub":"1000-8713","publisherId":"SP","title":"色谱 "},"keywords":[{"id":"98242924-40f1-48af-a6ab-f432f2497332","keyword":"高效液相色谱法","originalKeyword":"高效液相色谱法"},{"id":"13773956-8a3a-4a47-a101-aa6fb537e839","keyword":"线性梯度","originalKeyword":"线性梯度"},{"id":"768cde1a-8258-42a2-b8f6-94a02566f220","keyword":"保留时间","originalKeyword":"保留时间"},{"id":"30ff375d-15d6-474a-843e-f6620ef3a663","keyword":"预测","originalKeyword":"预测"}],"language":"zh","publisherId":"sp200103020","title":"反相高效液相色谱中流动相线性梯度洗脱条件下溶质保留时间预测的新方法","volume":"19","year":"2001"},{"abstractinfo":"根据溶质在色谱柱内的迁移规律,建立了一种利用线性梯度实验快速获得溶质保留值方程系数,然后以串行色谱响应函数为优化指标进行多台阶梯度分离条件优化的方法.与利用等度实验获得保留值方程的方法相比,该法可以大大缩短优化时间.通过该方法对芳香胺和衍生化氨基酸样品进行了分离,获得了满意的分离度,表明该方法的预测精度很好.","authors":[{"authorName":"单亦初","id":"21fa6b59-a269-4acb-bd4e-953a8cfc1246","originalAuthorName":"单亦初"},{"authorName":"张玉奎","id":"5a6dba85-00b7-4d25-b006-897c5d7d13b2","originalAuthorName":"张玉奎"},{"authorName":"赵瑞环","id":"63ab00cf-ef65-4df6-9bca-bcce82060581","originalAuthorName":"赵瑞环"}],"doi":"10.3321/j.issn:1000-8713.2002.04.001","fpage":"289","id":"344f7e01-1d59-4352-b94a-5fcb1abc5ede","issue":"4","journal":{"abbrevTitle":"SP","coverImgSrc":"journal/img/cover/SP.jpg","id":"58","issnPpub":"1000-8713","publisherId":"SP","title":"色谱 "},"keywords":[{"id":"9a377965-5ec2-4b47-84c7-aa732838c788","keyword":"反相高效液相色谱法","originalKeyword":"反相高效液相色谱法"},{"id":"6da5d44b-a688-4259-ba2b-a7484f7d1fcd","keyword":"线性梯度","originalKeyword":"线性梯度"},{"id":"b20b227f-705f-4ac6-a5b6-b8f96bd94241","keyword":"台阶梯度","originalKeyword":"台阶梯度"},{"id":"03a3d94e-e3b3-4f07-b20b-f1db1cb17ea5","keyword":"快速优化","originalKeyword":"快速优化"}],"language":"zh","publisherId":"sp200204001","title":"反相高效液相色谱三元流动相台阶梯度分离条件的快速优化方法","volume":"20","year":"2002"},{"abstractinfo":"","authors":[{"authorName":"陈学国","id":"2bd1ed35-fe2f-4b92-b32b-893ba376b818","originalAuthorName":"陈学国"},{"authorName":"赵瑞环","id":"6aaebadb-de19-4090-90c8-717f5abc43d9","originalAuthorName":"赵瑞环"},{"authorName":"倪坚毅","id":"18aec741-b04f-49dc-883e-d3deb6fe68ed","originalAuthorName":"倪坚毅"},{"authorName":"邹汉法","id":"1e529e9b-9209-4cf8-af83-790c552fff28","originalAuthorName":"邹汉法"}],"doi":"10.3321/j.issn:1000-8713.2004.01.026","fpage":"87","id":"eaa7cae9-12d0-4816-a556-188fc9a5e124","issue":"1","journal":{"abbrevTitle":"SP","coverImgSrc":"journal/img/cover/SP.jpg","id":"58","issnPpub":"1000-8713","publisherId":"SP","title":"色谱 "},"keywords":[{"id":"34b9cefc-f7d3-49d5-806a-4b6ef29942c8","keyword":"退火遗传算法","originalKeyword":"退火遗传算法"},{"id":"f4a90482-0966-4aea-8d7b-6bf3576e09dd","keyword":"反相色谱","originalKeyword":"反相色谱"},{"id":"e0d65652-9314-4a50-9a3c-6aa3c3738617","keyword":"条件优化","originalKeyword":"条件优化"},{"id":"e7a8918e-1257-41d9-8b33-f082d91cefa1","keyword":"线性梯度","originalKeyword":"线性梯度"}],"language":"zh","publisherId":"sp200401026","title":"退火遗传算法在液相色谱线性梯度分离条件优化中的应用","volume":"22","year":"2004"},{"abstractinfo":"基于线性溶剂强度模型,应用特征线分析的方法求解梯度洗脱模式下的理想液相色谱模型.在考虑到梯度延迟时间会对溶质的保留时间造成影响的情况下,得到适合于梯度液相色谱中任意等度、线性和阶梯梯度组合条件下的保留时间推导公式.应用这些公式计算任意的梯度条件下的保留时间,并将得到的结果与数值计算的结果进行比较,二者完全一致,从而验证了推导得到的保留时间公式的正确性.由于这些公式具有形式简单、适用范围广等优点,因此可方便地应用于实际应用中,具有较高的实用价值.","authors":[{"authorName":"郝卫强","id":"4058f5d3-047c-49c9-9ffa-334b2483180e","originalAuthorName":"郝卫强"},{"authorName":"狄斌","id":"63bb95b8-b0b0-4a12-9738-d1b62f50f5d6","originalAuthorName":"狄斌"},{"authorName":"杨永兵","id":"b2151c93-4514-4598-9e9b-192f18d71332","originalAuthorName":"杨永兵"},{"authorName":"陈强","id":"d1afe53b-a0c3-4d85-a539-10b628bf0e0b","originalAuthorName":"陈强"},{"authorName":"王俊德","id":"b7e65d11-c424-4ab3-8ef7-ff8686c5542f","originalAuthorName":"王俊德"}],"doi":"10.3724/SP.J.1123.2010.00541","fpage":"541","id":"7830864a-3574-449a-85b5-048777de21cd","issue":"6","journal":{"abbrevTitle":"SP","coverImgSrc":"journal/img/cover/SP.jpg","id":"58","issnPpub":"1000-8713","publisherId":"SP","title":"色谱 "},"keywords":[{"id":"3141202b-d354-4686-964f-bdde259cfd38","keyword":"液相色谱","originalKeyword":"液相色谱"},{"id":"e6f366ec-a2b9-4e09-89b4-ed251768d3b4","keyword":"保留时间","originalKeyword":"保留时间"},{"id":"2a0c3231-9ff4-474f-bc78-e727e4324fd8","keyword":"计算公式","originalKeyword":"计算公式"},{"id":"688fda62-226f-4a6e-a10a-8c793abe683a","keyword":"等度洗脱","originalKeyword":"等度洗脱"},{"id":"d3d78a86-5ec9-4dd1-be59-3c0018b59ac4","keyword":"线性梯度洗脱","originalKeyword":"线性梯度洗脱"},{"id":"d2e414ce-f727-4d4c-b443-869089699005","keyword":"阶梯梯度洗脱","originalKeyword":"阶梯梯度洗脱"}],"language":"zh","publisherId":"sp201006004","title":"梯度液相色谱中任意等度、线性和阶梯梯度组合下的保留时间公式","volume":"28","year":"2010"},{"abstractinfo":"基于物理中面的概念,建立了压电功能梯度板(FGM)几何非线性静力弯曲的基本方程,利用Ritz法研究了材料性质、梯度指数等对FGM板考虑几何非线性时弯曲变形的影响,并通过不同的电压施加方式探讨了压电材料对FGM板变形控制的规律.与已有文献结果对比分析表明,本文建立的方程和采用的方法是可靠的;基于几何非线性方程求解功能梯度材料板的静力变形时,计算偏差随着物理中面与几何中面位置偏差的增大而增大,在利用压电材料对FGM板的变形进行控制时,宜采用物理中面.","authors":[{"authorName":"李双蓓","id":"7deacad8-8d3e-474f-96f7-40a964ffed12","originalAuthorName":"李双蓓"},{"authorName":"吴海","id":"a4b7cf04-49f7-45c0-8ae2-61b87d2e8f5a","originalAuthorName":"吴海"},{"authorName":"崔凯","id":"5b569ce1-2472-457f-af38-38a6351bd591","originalAuthorName":"崔凯"}],"doi":"","fpage":"5","id":"3f16ba4a-20f0-4225-b5fe-f9f9d553bc70","issue":"11","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"6abff9f0-5481-4d5b-ad91-220bb51554d4","keyword":"功能梯度板","originalKeyword":"功能梯度板"},{"id":"ec7c5390-e3dd-4ef4-9a0a-74a7b6217243","keyword":"压电材料","originalKeyword":"压电材料"},{"id":"d361d3d9-5cd2-4031-bf9b-5e6cc0943c3e","keyword":"静力弯曲","originalKeyword":"静力弯曲"},{"id":"ca513eda-20da-4828-9720-6d2cda321902","keyword":"物理中面","originalKeyword":"物理中面"},{"id":"6ca5bb53-4dc2-40b6-a80d-d056f24d89dd","keyword":"几何非线性","originalKeyword":"几何非线性"},{"id":"2b549594-4414-4468-8d5e-b96ca2ab546f","keyword":"变形控制","originalKeyword":"变形控制"}],"language":"zh","publisherId":"blgfhcl201611001","title":"基于物理中面的压电功能梯度板几何非线性弯曲分析","volume":"","year":"2016"},{"abstractinfo":"研究了热环境中功能梯度圆板在横向简谐激励作用下的非线性动力响应和动应力问题。针对陶瓷-金属功能梯度圆板,考虑几何非线性、材料物理性质参数随温度变化及材料组分沿厚度方向按幂律分布的情况,应用虚功原理给出了热载荷与横向简谐载荷共同作用下的非线性振动偏微分方程。在固支无滑动的边界条件下,利用伽辽金法得到了达芬型非线性强迫振动方程。通过数值算例,给出了关于体积分数指数的分岔图,相图、Poincare映射等响应图以及动应力变化规律图,讨论了材料体积分数指数和温度场对功能梯度圆板非线性动力响应的影响。结果表明:热环境中功能梯度圆板随体积分数指数的变化可使系统出现周期响应、倍周期响应和混沌响应。功能梯度圆板中心处动应力在系统发生分岔或出现混沌响应时出现大幅变化,而且在混沌响应时具有不可预测性。","authors":[{"authorName":"张志强","id":"786384b3-f6fd-4c13-828f-df3204b27766","originalAuthorName":"张志强"},{"authorName":"胡宇达","id":"fe87b8dc-9d3e-429e-b124-4fc202fb877d","originalAuthorName":"胡宇达"}],"doi":"","fpage":"237","id":"3310fa82-de9a-42af-ab04-27f1a24b8c91","issue":"6","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"b4683853-79ef-4774-8f31-52a34ec5b87b","keyword":"功能梯度材料","originalKeyword":"功能梯度材料"},{"id":"24d450f3-ddc5-4ef3-9bb2-eecbb96f6df6","keyword":"圆板","originalKeyword":"圆板"},{"id":"02ca4e8c-0f8b-4a23-a750-930146b68a4f","keyword":"动力响应","originalKeyword":"动力响应"},{"id":"c0988988-84c5-49f0-b0aa-2293f3e605a8","keyword":"混沌","originalKeyword":"混沌"},{"id":"968c6f9b-da29-4c46-892a-64fb0746a6c1","keyword":"动应力","originalKeyword":"动应力"}],"language":"zh","publisherId":"fhclxb201106038","title":"热环境中功能梯度圆板的非线性动力响应分析","volume":"28","year":"2011"},{"abstractinfo":"在沿厚度方向线性变化的温度场中,对受机械载荷作用下的四边简支功能梯度材料柱面曲板的非线性振动特性进行了分析.假设柱面曲板上表面为陶瓷层,下表面为金属层,材料特性为沿厚度方向按幂律梯度变化.在考虑几何非线性与剪切变形情况下,运用一阶剪切变形理论和Hamilton原理建立了功能梯度材料柱面曲板的非线性动力学方程.并用Galerkin法将运动控制方程离散为5个自由度的非线性动力学系统,方程中保留了面内和转动惯性项的影响,利用数值分析方法,研究了在一定横向激励作用下,不同体积分数指数对圆柱壳的非线性动力行为的影响.结果表明,随着材料体积分数指数的增加,曲板的横向振幅和振动速度渐降低.","authors":[{"authorName":"杨莉","id":"339370b8-89a8-42cb-9230-cb92742608c0","originalAuthorName":"杨莉"},{"authorName":"郝育新","id":"caf53d13-a7d5-42f0-a6f0-ad68c2472035","originalAuthorName":"郝育新"}],"doi":"","fpage":"36","id":"89e433ab-ddf0-4966-8637-e8dbddd896f1","issue":"9","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"22d7a8ae-85c2-4759-803e-8ea59cedf957","keyword":"柱面曲板","originalKeyword":"柱面曲板"},{"id":"815dfe21-dfee-41a1-b19c-b8e63ba53f42","keyword":"功能梯度材料","originalKeyword":"功能梯度材料"},{"id":"051ae0ae-8180-4994-928a-e681109db45b","keyword":"非线性动力学","originalKeyword":"非线性动力学"}],"language":"zh","publisherId":"jsrclxb201309007","title":"热环境下功能梯度材料柱面曲板非线性动力学分析","volume":"34","year":"2013"},{"abstractinfo":"针对强电场作用下基于线性压电本构方程求解压电功能梯度板固有频率存在误差的问题,本文考虑非线性压电效应,采用样条有限点法建立压电非线性动力分析模型,讨论强电场作用下压电非线性效应对固有频率的影响.研究表明,强电场作用下压电线性解与非线性解偏差较大,非线性效应不容忽视;由于功能梯度板的材料特性,相同电场强度下不同的施加方式,会得到不同的固有频率控制效果;基于样条有限点法建立的分析模型精确可靠,具有输入简单、处理边界条件简便等优点.","authors":[{"authorName":"李双蓓","id":"00534b05-5b98-4d31-b46f-41450b1ed3c4","originalAuthorName":"李双蓓"},{"authorName":"黄君","id":"0ac8350c-894a-4f72-81e6-0d65dcc6d39c","originalAuthorName":"黄君"},{"authorName":"顾春霞","id":"9d7a81b6-842e-4b83-b0d3-086d4bbb253d","originalAuthorName":"顾春霞"},{"authorName":"黄贤智","id":"c6241ac6-f462-4158-9e4d-4530eb6f9c2f","originalAuthorName":"黄贤智"}],"doi":"","fpage":"8","id":"0559d18d-dd12-415f-a16c-257fa5caf9fd","issue":"4","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"08a3a620-a612-4e4b-9c37-89d67c876937","keyword":"压电材料","originalKeyword":"压电材料"},{"id":"dc8928d2-baac-4ee4-b31b-caa865b75efd","keyword":"功能梯度材料","originalKeyword":"功能梯度材料"},{"id":"c95b2903-e821-4a1d-ac06-471676bfc723","keyword":"非线性压电效应","originalKeyword":"非线性压电效应"},{"id":"7327401f-3913-4108-8f48-9b8255952b34","keyword":"固有频率","originalKeyword":"固有频率"},{"id":"aa459744-88e8-4619-a316-f441ebf7dd83","keyword":"样条有限点法","originalKeyword":"样条有限点法"}],"language":"zh","publisherId":"blgfhcl201404002","title":"强电场下压电功能梯度板非线性动力分析的样条有限点法","volume":"","year":"2014"},{"abstractinfo":"在梯度液相色谱中,溶剂混合以及轴向扩散等因素会使梯度曲线发生变形,而这在阶梯梯度以及高斜率的线性梯度中表现得尤为明显。本文探讨了这种梯度曲线变形对色谱峰宽的影响。首先以 C18色谱柱为固定相,甲醇-水为流动相,联苯和苯乙酮为样品,测得不同线性梯度和阶梯梯度条件下的色谱峰。然后以205 nm 为检测波长,记录相应条件下未接色谱柱时甲醇的响应值,得到柱入口处的梯度曲线。接着根据所设定的梯度条件以及柱入口处测得的梯度曲线,分别计算相应情形中色谱峰宽的理论值,将其与实验值进行了比较。研究结果表明,梯度曲线的变形会对色谱峰宽产生影响。当将这种影响考虑在内后,理论值与实验值更为吻合。","authors":[{"authorName":"吴顺","id":"b57c82aa-d55d-4038-ba4a-c1d9af58ab71","originalAuthorName":"吴顺"},{"authorName":"郝卫强","id":"ba528ba2-2284-4b55-bb8d-3a7a90d54f9d","originalAuthorName":"郝卫强"},{"authorName":"岳邦毅","id":"74866080-4cb0-44e2-bf8d-b2dbd407a28c","originalAuthorName":"岳邦毅"},{"authorName":"张培培","id":"f4fa4624-d3c9-404b-833d-fc6041e963fb","originalAuthorName":"张培培"},{"authorName":"狄斌","id":"d2c1569b-7711-4178-bab6-284abbe90d48","originalAuthorName":"狄斌"},{"authorName":"陈强","id":"0f67412c-19c4-4fd1-b5db-3d72afd1312e","originalAuthorName":"陈强"}],"doi":"10.3724/SP.J.1123.2015.01013","fpage":"558","id":"ae6400d0-2101-444f-bc6a-c62ded24070e","issue":"6","journal":{"abbrevTitle":"SP","coverImgSrc":"journal/img/cover/SP.jpg","id":"58","issnPpub":"1000-8713","publisherId":"SP","title":"色谱 "},"keywords":[{"id":"fe8fa198-27ff-4343-b137-413047ef4643","keyword":"液相色谱","originalKeyword":"液相色谱"},{"id":"793fc970-ebc6-481a-8bb0-4c932844dfe2","keyword":"梯度洗脱","originalKeyword":"梯度洗脱"},{"id":"b998125d-4cd7-48d5-b8f3-037ad6de0527","keyword":"梯度曲线","originalKeyword":"梯度曲线"},{"id":"72f98a27-359b-405f-89fe-04571638df15","keyword":"色谱峰宽","originalKeyword":"色谱峰宽"}],"language":"zh","publisherId":"sp201506003","title":"梯度液相色谱中梯度曲线变形对色谱峰宽的影响","volume":"","year":"2015"},{"abstractinfo":"给出了一种适用于梯度复合材料热传导分析的梯度单元,采用细观力学方法描述材料变化的热物理属性,通过线性插值和高阶插值温度场分别给出了4节点和8节点梯度单元随空间位置变化的热传导刚度矩阵。推导了在温度梯度载荷和热流密度载荷作用下,矩形梯度板的稳态温度场和热通量场精确解。基于该精确解对比了连续梯度模型和传统的离散梯度模型的热传导有限元计算结果,验证了梯度单元的有效性,并讨论了相关参数对梯度单元的影响。结果表明,梯度单元和均匀单元得到的温度场基本一致;当热载荷垂直于材料梯度方向时,梯度单元能够给出更加精确的局部热通量场;当热载荷平行于材料梯度方向时,4节点梯度单元性能恶化,8节点梯度单元和均匀单元的计算结果与精确解吻合很好。","authors":[{"authorName":"陈康","id":"2119249c-9c93-42ab-9148-e93066348f7b","originalAuthorName":"陈康"},{"authorName":"许希武","id":"e3e9caaa-e01b-47d3-85e7-2cccaf5b8c60","originalAuthorName":"许希武"}],"doi":"","fpage":"178","id":"66dfceba-00a6-4b3b-bde9-0e7df58968b9","issue":"4","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"a5589537-3564-4126-822d-338a50469617","keyword":"梯度单元","originalKeyword":"梯度单元"},{"id":"dd2941d1-74f3-4462-b18d-0af0ae43cb1c","keyword":"热传导分析","originalKeyword":"热传导分析"},{"id":"e21ff7ba-69b9-4132-b4e2-100c620c2596","keyword":"梯度复合材料","originalKeyword":"梯度复合材料"},{"id":"cd88f9ab-fe0c-41d5-a89d-a5a72241bfa1","keyword":"有限元方法","originalKeyword":"有限元方法"},{"id":"d01d1909-3946-4b18-a20e-8c1ac09b3fb4","keyword":"细观力学","originalKeyword":"细观力学"}],"language":"zh","publisherId":"fhclxb201204029","title":"梯度复合材料热传导分析的梯度单元法","volume":"29","year":"2012"}],"totalpage":1138,"totalrecord":11380}