{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"作为球床模块式反应堆中燃料元件循环的重要组成部分,燃耗测量系统必须对连续排出堆芯的燃料球进行非破坏性在线测量,以确定是作为乏燃料球退出循环,还是将其返回堆芯。137 Cs的活度和燃耗值存在很好的单调对应关系,因此在高温气冷堆(HTR-PM)核电站示范工程中将利用高纯锗探测器测量燃料球中137 Cs的活度,进而根据燃耗计算曲线确定其燃耗值。通过实验以及基于Geant4的蒙特卡罗全模拟,利用效率传递方法准确得到了系统刻度的修正因子。同时发展了快速自动的谱寻峰和峰面积分析程序用于双源实验和MCNP模拟的γ谱分析,结果表明,尽管有干扰峰的影响,该系统预计对137 Cs的活度测量相对不确定度依然可以控制在3.0%以内。在以上工作基础上成功研制并测试了一套全尺寸的燃耗测量系统原型。","authors":[{"authorName":"闫威华","id":"72ee3864-eb39-4594-8e5b-052ff1fa6a48","originalAuthorName":"闫威华"},{"authorName":"张立国","id":"77dbd26f-9951-48b1-b793-3e1a7aa6a5fd","originalAuthorName":"张立国"},{"authorName":"张钊","id":"19f9ce2d-1764-4f6a-897b-beb9883e707f","originalAuthorName":"张钊"},{"authorName":"肖志刚","id":"aac60816-dacf-4672-ab94-467aa0dd9574","originalAuthorName":"肖志刚"}],"doi":"10.11804/NuclPhysRev.31.03.366","fpage":"366","id":"72ba4aa6-c2c8-44b6-9293-9dcf608a7dc9","issue":"3","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"ffa368ad-16cc-43f3-8ec8-e0eb55214e37","keyword":"高温气冷堆核电站示范工程","originalKeyword":"高温气冷堆核电站示范工程"},{"id":"74920712-9c15-4ea5-9478-207dc9366a6b","keyword":"燃耗测量","originalKeyword":"燃耗测量"},{"id":"dbc88f64-9018-48bd-88d1-eeffc2a39fb4","keyword":"蒙特卡罗模拟","originalKeyword":"蒙特卡罗模拟"},{"id":"8696074d-908d-4725-bc95-e0e3e1298271","keyword":"高纯锗","originalKeyword":"高纯锗"},{"id":"cf58e196-87bd-4250-8f71-3eeda5dbcdb4","keyword":"γ活度","originalKeyword":"γ活度"}],"language":"zh","publisherId":"yzhwlpl201403013","title":"HTR-PM中燃耗测量方法研究和测量系统原型研制","volume":"","year":"2014"},{"abstractinfo":"用模拟粗二氧化锗考察了盐酸浓度、温度对氯化蒸馏的影响. 开展了氧化除砷及盐酸萃取除砷和精馏净化的试验; 用传统的水解-氢还原工艺制得了纯锗.","authors":[{"authorName":"徐凤琼","id":"e30ceaeb-61e3-4ed0-a693-6eeac56cf0b2","originalAuthorName":"徐凤琼"},{"authorName":"刘云霞","id":"d1609c75-62a5-43f9-8f32-aa4bf05723f7","originalAuthorName":"刘云霞"}],"doi":"10.3969/j.issn.0258-7076.1998.05.006","fpage":"345","id":"e406125e-c452-4d8d-8962-a48575223eff","issue":"5","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"987563c6-fdda-4e28-b5f3-e96087125d11","keyword":"锗","originalKeyword":"锗"},{"id":"0c19b93b-85ed-47cf-a17f-e1b49e4ed056","keyword":"二氧化锗","originalKeyword":"二氧化锗"},{"id":"9e8a40e2-6fd2-4d87-8251-191df04cc5fe","keyword":"蒸馏","originalKeyword":"蒸馏"},{"id":"c67266fc-aaf2-4400-95d4-4cf7761cd737","keyword":"砷","originalKeyword":"砷"}],"language":"zh","publisherId":"xyjs199805006","title":"用粗二氧化锗制取高纯锗","volume":"22","year":"1998"},{"abstractinfo":"以目前国际上极为活跃开展的暗物质探测、无中微子双β衰变研究为例,评述了高纯锗探测器的重要性及其广泛的应用前景。介绍了己开展的高纯锗单晶、探测器制备的关键技术研究进展:合作单位已研制出了用于高纯锗单晶材料制备的区熔炉、单晶炉;并制备出直径为20~50 cm、纯度为12N(<4×1011 atoms/cm3)、位错<5000 atoms/cm2的锗单晶;掌握了高纯锗探测器(平面型、同轴型)制备的关键技术,用进口高纯锗单晶材料制备出的同轴型高纯锗探测器对γ射线的能量分辨率及探测效率均达到进口产品指标,使用自制的12N高纯锗单晶材料己制备出平面型高纯锗探测器。呼吁加速高纯锗研制的自主创新步伐,尽早实现其国产化目标。","authors":[{"authorName":"白尔隽","id":"9788f987-8b30-4d39-b30f-8816b70fbd58","originalAuthorName":"白尔隽"},{"authorName":"郑志鹏","id":"48501208-3ff4-4218-86df-78a41e0d8c5b","originalAuthorName":"郑志鹏"},{"authorName":"高德喜","id":"914a33e0-40b6-4849-bcb6-55897c6ffa5b","originalAuthorName":"高德喜"},{"authorName":"孙慧斌","id":"b68c4dbb-daad-49ca-9d57-ec5d36dc8037","originalAuthorName":"孙慧斌"},{"authorName":"赵海歌","id":"558e0f8c-5a14-44b4-9bd1-3d0841e644f7","originalAuthorName":"赵海歌"},{"authorName":"孙志嘉","id":"053f3f0d-2c5e-495b-9184-e07ac58803e9","originalAuthorName":"孙志嘉"},{"authorName":"米家蓉","id":"7321ac64-2159-4437-ac61-b50d46918f7b","originalAuthorName":"米家蓉"},{"authorName":"谢天敏","id":"d08484c7-3e47-4846-b4df-8b693f682d69","originalAuthorName":"谢天敏"},{"authorName":"李学洋","id":"38282f32-c02f-4ca9-8b59-f0023d26e141","originalAuthorName":"李学洋"}],"doi":"10.11804/NuclPhysRev.33.01.052","fpage":"52","id":"2aa7d5bb-d851-4009-ac98-9c9b64209e17","issue":"1","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"7eba7cc9-e4b8-404a-8914-625f4ad0fb52","keyword":"高纯锗单晶","originalKeyword":"高纯锗单晶"},{"id":"f1d66461-ce8f-4cb6-931b-60a89c4214ca","keyword":"高纯锗探测器","originalKeyword":"高纯锗探测器"},{"id":"75de7e69-d49d-41c9-8c62-dd7883c103da","keyword":"暗物质","originalKeyword":"暗物质"}],"language":"zh","publisherId":"yzhwlpl201601010","title":"高纯锗探测器的广泛应用和自主研制进展","volume":"33","year":"2016"},{"abstractinfo":"研究了各种高锗物料中微量砷的催化极谱分析方法,若试样中存在大量Pb(Ⅱ),Cd(Ⅱ),Cu(Ⅱ)等干扰物质时,采用强碱分离.根据在H2SO4-Te(Ⅳ)-I--As(Ⅴ)催化极谱测定体系中,锗无极谱活性的特点,不需分离锗而直接测定高锗物料中的微量砷,结果满意.","authors":[{"authorName":"梁云生","id":"64151fad-954d-436e-a3e1-3df80a89740f","originalAuthorName":"梁云生"},{"authorName":"毛禹平","id":"fb43c295-528c-4dac-aaef-e1affc246d45","originalAuthorName":"毛禹平"},{"authorName":"朱煜","id":"4c1abc6c-b51a-4107-86dd-119d39e43706","originalAuthorName":"朱煜"}],"doi":"10.3969/j.issn.1000-7571.2003.04.015","fpage":"41","id":"5a971b6f-033d-4aa7-a038-ddb17ed261f2","issue":"4","journal":{"abbrevTitle":"YJFX","coverImgSrc":"journal/img/cover/YJFX.jpg","id":"71","issnPpub":"1000-7571","publisherId":"YJFX","title":"冶金分析 "},"keywords":[{"id":"ab0aef2d-a806-43ee-8479-e9b41fc12de8","keyword":"极谱法","originalKeyword":"极谱法"},{"id":"fd760ceb-e6bf-44bf-87a1-aa1e26e9b0b2","keyword":"锗物料","originalKeyword":"锗物料"},{"id":"6347a07f-93e0-4058-8a34-080d7d7fef58","keyword":"微量砷","originalKeyword":"微量砷"}],"language":"zh","publisherId":"yjfx200304015","title":"催化极谱法快速测定高锗物料中的微量砷","volume":"23","year":"2003"},{"abstractinfo":"本文详细研究了高锡含量锗锡合金(Ge0.92Sn0.08)与镍在退火条件下的反应.通过表层电阻测试、原子力显微镜和透射电镜等表征手段,我们分别研究了镍锗锡材料在300℃、400℃、500℃温度下退火后的表面和界面形貌.研究表明:与镍和锗反应相比,镍和锗锡材料反应生成的镍锗锡薄膜热稳定性变差,退火温度400℃后镍锗锡薄膜表层电阻就迅速增加,样品表面变得不连续,团聚为平均长度200nm左右的岛状晶粒,样品表面和界面与电学性质都遭到了破坏.","authors":[{"authorName":"孟骁然","id":"5a17f4c8-3295-4310-b4be-fe60282628a0","originalAuthorName":"孟骁然"},{"authorName":"平云霞","id":"0fbfe8f1-0530-4b3f-95d9-740185a9fba0","originalAuthorName":"平云霞"},{"authorName":"常永伟","id":"6507880a-219f-4a52-a69c-d4907adff809","originalAuthorName":"常永伟"},{"authorName":"魏星","id":"e8155dc5-b921-4a9a-9b80-1d684514018b","originalAuthorName":"魏星"},{"authorName":"俞文杰","id":"59809262-7ba9-461c-b490-c4586e39dae9","originalAuthorName":"俞文杰"},{"authorName":"薛忠营","id":"8803daa0-4004-4f24-994f-483a554a62b4","originalAuthorName":"薛忠营"},{"authorName":"狄增峰","id":"e81f80a0-4938-40cf-8ffa-7b1ce7d62a78","originalAuthorName":"狄增峰"},{"authorName":"张苗","id":"79b0d44f-6572-4648-826b-66e5f53c2ca2","originalAuthorName":"张苗"},{"authorName":"张波","id":"9a68ee0e-c684-400f-86a1-96e4267fbd11","originalAuthorName":"张波"}],"doi":"","fpage":"85","id":"79e37da9-60e6-467f-9947-06fc97526612","issue":"5","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"65256016-f363-4c27-ac18-8f4a2582d9d6","keyword":"锗锡合金","originalKeyword":"锗锡合金"},{"id":"8760dd7f-343a-4294-a5f2-b9e833d7020a","keyword":"镍","originalKeyword":"镍"},{"id":"bfcf2978-3cdd-4b00-a5a3-59f55c86e767","keyword":"热稳定性","originalKeyword":"热稳定性"}],"language":"zh","publisherId":"gnclyqjxb201505001","title":"高锡含量锗锡合金和镍反应的形貌研究","volume":"21","year":"2015"},{"abstractinfo":"高纯钴主要应用于磁记录材料、磁传感器材料、光电材料等高技术领域.其制备方法有萃取法、离子交换法、电解法、真空熔炼法等.萃取法和离子交换法能够制备高纯盐, 这是制备高纯钴的重要环节.高纯钴盐通过沉淀、氢还原或电解能获得高纯金属原料, 该过程也将金属进一步提纯.真空熔炼法能够进一步提纯金属, 并得到性能优异的金属锭.采用几种方法结合的工艺路线可以制备出品质优良的高纯材料.","authors":[{"authorName":"陈蓉","id":"98ce9af8-9406-4938-922c-18ecde6bed5f","originalAuthorName":"陈蓉"},{"authorName":"王力军","id":"cf76c8fe-17ca-4520-8621-e2c05b9b174c","originalAuthorName":"王力军"},{"authorName":"罗远辉","id":"1b53adc4-cbda-42b6-aca0-68a6dd0e2d44","originalAuthorName":"罗远辉"},{"authorName":"张力","id":"fbfb43b4-a869-40d9-99bb-c9c878849c28","originalAuthorName":"张力"},{"authorName":"陈松","id":"833018c9-94d0-4ca8-8e3f-85f6c3836d61","originalAuthorName":"陈松"},{"authorName":"韩林","id":"c2971562-454c-4a36-b2a9-61821e47fc32","originalAuthorName":"韩林"}],"doi":"10.3969/j.issn.0258-7076.2005.05.043","fpage":"797","id":"3956c55f-58ec-4703-afd1-9a523af04a52","issue":"5","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"69952c2c-6965-4ad8-92c7-450421ec9087","keyword":"高纯钴","originalKeyword":"高纯钴"},{"id":"d31fc244-f68b-4e76-b2e7-70069c919ea3","keyword":"萃取","originalKeyword":"萃取"},{"id":"4ac104a9-eb8c-469f-b537-493a100251c4","keyword":"离子交换","originalKeyword":"离子交换"},{"id":"194ef3cf-12c1-424b-b15d-9bc6aa1c49a9","keyword":"电解","originalKeyword":"电解"},{"id":"7e1c90f2-8949-452f-be43-5aa40155e141","keyword":"真空熔炼","originalKeyword":"真空熔炼"}],"language":"zh","publisherId":"xyjs200505043","title":"高纯钴制备技术","volume":"29","year":"2005"},{"abstractinfo":"四氯化锗用于制备高纯二氧化锗及石英光导纤维的搀杂剂等.介绍了四氯化锗的质量标准和提纯基本原理,综述了国内外四氯化锗的提纯工艺,着重介绍了除去粗四氯化锗中金属杂质以及含氢杂质的工艺.","authors":[{"authorName":"王少龙","id":"119be1a5-be3f-4113-8640-b285e56cfe1f","originalAuthorName":"王少龙"},{"authorName":"雷霆","id":"1664c88e-5453-41e4-a4d0-1b5e138738ae","originalAuthorName":"雷霆"},{"authorName":"张玉林","id":"56e4f0c4-9e23-484d-a8e3-71313305841a","originalAuthorName":"张玉林"},{"authorName":"周荣","id":"29fc004d-a9ae-4b9a-a429-334553864613","originalAuthorName":"周荣"}],"doi":"","fpage":"35","id":"bb47b4c3-e191-46f1-8201-22f5e8029e48","issue":"7","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"f0010c9f-20be-4643-ab3c-3f93ebcd31e6","keyword":"四氯化锗","originalKeyword":"四氯化锗"},{"id":"907c21a2-e150-45b1-8021-a1160b78b18a","keyword":"提纯","originalKeyword":"提纯"},{"id":"76adce39-7214-45d8-9dbd-404203e970bd","keyword":"工艺","originalKeyword":"工艺"}],"language":"zh","publisherId":"cldb200607009","title":"四氯化锗提纯工艺研究进展","volume":"20","year":"2006"},{"abstractinfo":"高Ge组分的SiGe薄膜在应变硅、应变锗以及高速器件的应用前景十分广阔.本文以Si/SiGe/SOI(绝缘体上的硅)结构为初始样品,设计了系统性的氧化浓缩实验,通过大量的分析和参数调整,制备获得了不同组分比的绝缘体上锗硅(SiGe on insulator,SGOI)薄膜样品.结合X射线衍射(XRD)和拉曼光谱(Raman)等测试手段表征了制备样品的晶格质量和元素组分,其中Ge组分最高达到80.5%.综合分析表明:在适当的条件下,Ge组分和浓缩时间线性关系明显,浓缩制备SGOI材料可以做到组分可控性,为相关的进一步研究提供便利.","authors":[{"authorName":"刘旭焱","id":"b274fed3-596e-40fc-a8c1-14b62c0b1923","originalAuthorName":"刘旭焱"},{"authorName":"姬晓旭","id":"7367f890-00ab-458a-8a1a-2d2b2ebb1445","originalAuthorName":"姬晓旭"},{"authorName":"王爱华","id":"44c0fcf5-ed58-457c-b5ac-b10367403577","originalAuthorName":"王爱华"},{"authorName":"张帅","id":"42120693-b136-4fdf-bd37-f0e524c6dea7","originalAuthorName":"张帅"},{"authorName":"秦怡","id":"ae157cdb-64cc-4529-9162-bb3acef6ca44","originalAuthorName":"秦怡"},{"authorName":"李根全","id":"7d6fd6d3-8c2a-44f5-82e8-d24fb7452d1d","originalAuthorName":"李根全"}],"doi":"","fpage":"1781","id":"08d7f02a-917e-4158-a0d9-0ab35d183ab8","issue":"7","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"35586810-e660-4eeb-a43d-6c5f629201a5","keyword":"绝缘体上锗硅","originalKeyword":"绝缘体上锗硅"},{"id":"c7484f0b-4f74-41dd-be1a-ac63291175af","keyword":"锗浓缩","originalKeyword":"锗浓缩"},{"id":"88a2fa28-bd1e-476c-9cf3-266ca7f9beab","keyword":"组分可控","originalKeyword":"组分可控"}],"language":"zh","publisherId":"rgjtxb98201407033","title":"组分可控的浓缩法制备高锗组分SGOI的研究","volume":"43","year":"2014"},{"abstractinfo":"在高纯镓电解提纯的工业实践中, 研究了电流密度、 NaOH浓度、电极形式和周期反向电解等因素对电解过程的影响, 确定了适宜的工艺生产控制条件. 1#镓只经一次电解, 产品完全能够达到99.999%高纯镓的要求, 有70%以上的产品达到99.9999%镓的质量标准, 电流效率达98%以上.","authors":[{"authorName":"佘旭","id":"1b55be48-da05-4575-a16e-9f4b82898a07","originalAuthorName":"佘旭"}],"doi":"10.3969/j.issn.0258-7076.2007.06.030","fpage":"871","id":"26fe6aca-5109-4a7a-b5a5-1eec9dea287a","issue":"6","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"34b59b48-a23c-4fd6-a333-f03f553c4fd7","keyword":"高纯镓","originalKeyword":"高纯镓"},{"id":"a52214b9-2ddb-4fd3-8fed-58ef1ac75508","keyword":"电流密度","originalKeyword":"电流密度"},{"id":"2e5fbc4e-1a4f-4b53-bfc6-75415f4d2083","keyword":"周期反向电解","originalKeyword":"周期反向电解"}],"language":"zh","publisherId":"xyjs200706030","title":"高纯镓电解精炼的研究","volume":"31","year":"2007"},{"abstractinfo":"介绍了制备高纯硒的工艺过程,以纯度为99.9%的硒为原料.首先采用化学方法除去杂质碲,即将材料氧化为各自的氧化物,利用溶解度的差异于溶剂中分离提纯;然后还原纯净含硒溶液,制备出的5N硒粉再进行真空蒸馏提纯.最终制备出纯度达到或超过6N的高纯硒材料.高纯硒中的杂质采用采用ICP.AES或GDMS进行分析检测.","authors":[{"authorName":"高远","id":"669c2d41-fbac-49a2-ba18-41b8fcb9e385","originalAuthorName":"高远"},{"authorName":"吴昊","id":"5e7a6bc2-5f71-49ad-a596-223b94baa6d1","originalAuthorName":"吴昊"},{"authorName":"王继民","id":"aef239ef-3996-4bf6-8782-6c7b38c1eeb5","originalAuthorName":"王继民"}],"doi":"10.3969/j.issn.0258-7076.2009.02.028","fpage":"276","id":"243a6658-6b4a-4a98-a872-32150c3550b8","issue":"2","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"f99b11f9-53da-4328-a3b6-2af80f825ce6","keyword":"高纯硒","originalKeyword":"高纯硒"},{"id":"3a391e35-b63f-4dac-8014-3825f16e509b","keyword":"提纯","originalKeyword":"提纯"},{"id":"5773e21f-60ff-474e-9a36-bdfc13433294","keyword":"真空蒸馏","originalKeyword":"真空蒸馏"}],"language":"zh","publisherId":"xyjs200902028","title":"高纯硒的制备方法","volume":"33","year":"2009"}],"totalpage":2858,"totalrecord":28572}