{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用金相显微镜、扫描电镜及能谱仪探讨了A2冷作模具钢中心孔洞缺陷的形成原因.结果表明:试验钢具有严重的液析碳化物偏析,心部的液析碳化物尺寸及数量较边部大,具有明显的块状聚集;孔洞型缺陷主要分布在钢锭心部,其内表面平滑,缺陷的形成与A2钢中Cr7C3型液析碳化物的回熔有关.此外,心部大尺寸的液析碳化物经锻造破碎后产生的间隙,由于成分偏析而大量偏聚于液析碳化物边缘的小颗粒碳化物,非金属夹杂物及片状石墨均能促使A2钢中心形成孔洞型缺陷.","authors":[{"authorName":"刘振天","id":"eee8ed93-209b-47d2-bfaf-5b8b45687df1","originalAuthorName":"刘振天"},{"authorName":"周健","id":"83244cf3-867f-4623-83d6-41f0fb40c035","originalAuthorName":"周健"},{"authorName":"马党参","id":"d2689d17-e38b-4bf5-bb23-8334fa3ca7bb","originalAuthorName":"马党参"},{"authorName":"秋立鹏","id":"b8e2798e-549c-497c-bc0c-bea26ef78b6c","originalAuthorName":"秋立鹏"},{"authorName":"刘宝石","id":"839b8136-e871-44c6-b069-859f49bd9592","originalAuthorName":"刘宝石"}],"doi":"10.13228/j.boyuan.issn1001-0777.20140109","fpage":"49","id":"cfc5b50d-7d56-42b4-8e08-8dc49b906be9","issue":"3","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"62e6b762-8dca-4e57-b747-0437cbf7870e","keyword":"A2钢","originalKeyword":"A2钢"},{"id":"2e0f72dd-4a62-4fce-ad4e-26501494da10","keyword":"冷作模具钢","originalKeyword":"冷作模具钢"},{"id":"469b9443-10ad-4275-ac9f-c0239fbad7e0","keyword":"孔洞缺陷","originalKeyword":"孔洞缺陷"},{"id":"f117e498-6858-4053-8a14-d97fcf3ec2e8","keyword":"液析碳化物","originalKeyword":"液析碳化物"},{"id":"301419cd-c939-4364-9de3-077f3bd4c069","keyword":"碳化物回熔","originalKeyword":"碳化物回熔"}],"language":"zh","publisherId":"wlcs201503011","title":"A2冷作模具钢中心孔洞缺陷分析","volume":"33","year":"2015"},{"abstractinfo":"以五氧化二钒为供钒剂、二氧化钛为供钛剂,采用不同时间进行Cr12MoV冷作模具钢表面钒-钛复合渗,并研究显微组织、相结构、耐磨损性能和耐腐蚀性能.结果表明,复合渗温度890℃可以实现Cr12MoV冷作模具钢表面钒-钛复合渗,复合渗涂层由VC、TiC和少量的V8C7组成.为提高Cr12MoV冷作模具钢的耐磨损性能和耐腐蚀性能,复合渗时间优选为7h.","authors":[{"authorName":"刘卫东","id":"9ddf40e6-3225-4129-9868-cf914df03307","originalAuthorName":"刘卫东"},{"authorName":"林翠青","id":"0ff67aba-a888-478c-b489-cfd063c70bad","originalAuthorName":"林翠青"}],"doi":"10.7513/j.issn.1004-7638.2016.01.013","fpage":"61","id":"f38d68b9-388b-4b5e-920f-0bbf3672a208","issue":"1","journal":{"abbrevTitle":"GTFT","coverImgSrc":"journal/img/cover/gtft1.jpg","id":"28","issnPpub":"1004-7638","publisherId":"GTFT","title":"钢铁钒钛"},"keywords":[{"id":"6045eb90-fe7d-4346-97a7-04b3a53fa434","keyword":"冷作模具钢","originalKeyword":"冷作模具钢"},{"id":"fadc4f13-53b6-4b79-af91-abafb3285afc","keyword":"复合渗","originalKeyword":"复合渗"},{"id":"baddab31-b995-4377-b06e-a4222fab5e7a","keyword":"钒-钛复合渗","originalKeyword":"钒-钛复合渗"},{"id":"e0a16f71-33de-451a-8e4e-e504dd5aceb5","keyword":"相结构","originalKeyword":"相结构"},{"id":"46a8acfc-3e44-497f-a397-4512168c5b57","keyword":"耐磨损性能","originalKeyword":"耐磨损性能"}],"language":"zh","publisherId":"gtft201601013","title":"冷作模具钢表面的钒-钛复合渗工艺研究","volume":"37","year":"2016"},{"abstractinfo":"对比研究了新型冷作模具钢SDC55和进口模具钢DC53、SLD及ASSAB88的抗弯曲性能和耐磨损性能.在电子万能试验机上对实验钢的抗弯曲性能进行了测试,并在M-200磨损仪上研究了其耐磨性能.利用超景深三维显微系统研究了实验钢磨损后的磨痕,并对其进行了金相观察.利用JMat-Pro软件对4种实验钢的组织进行了计算.通过对比研究发现,与进口对比钢相比,新型冷作模具钢SDC55的抗弯曲性能最好,并且其耐磨损性能好于SLD钢.","authors":[{"authorName":"邓黎辉","id":"ba442c3f-26df-4961-821d-f8882e565ae3","originalAuthorName":"邓黎辉"},{"authorName":"汪宏斌","id":"f6badd1e-b0a4-4bb2-9047-2a4fe0bd818c","originalAuthorName":"汪宏斌"},{"authorName":"李绍宏","id":"beaf7c39-09c9-4ad6-9863-f9a1e4e84c34","originalAuthorName":"李绍宏"},{"authorName":"梁洋杰","id":"e469f732-00bf-4d32-9155-ee073d8c056e","originalAuthorName":"梁洋杰"},{"authorName":"吴晓春","id":"628a60c8-ee0a-4488-886d-58962e15c282","originalAuthorName":"吴晓春"}],"doi":"10.3969/j.issn.1001-7208.2011.01.002","fpage":"8","id":"8b91779a-99a2-41d8-a14c-b0a2e7699191","issue":"1","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"9266ddb9-0209-4b30-b32f-38b74fec19c4","keyword":"SDC55钢","originalKeyword":"SDC55钢"},{"id":"853b778f-11fb-4daf-b463-93c75b866266","keyword":"冷作模具钢","originalKeyword":"冷作模具钢"},{"id":"a6873585-4a37-4ed6-a027-590be84e1d96","keyword":"抗弯曲性能","originalKeyword":"抗弯曲性能"},{"id":"a9047090-f228-4cb0-b2b7-63dd88c29a88","keyword":"耐磨损性能","originalKeyword":"耐磨损性能"}],"language":"zh","publisherId":"shjs201101002","title":"新型冷作模具钢SDC55的性能研究","volume":"33","year":"2011"},{"abstractinfo":"通过试验实测冷作模具钢SDC99的低温参数,结合沸腾换热经验模型求解沸腾换热系数,建立有限元数值分析模型,对SDC99冷作模具钢试件深冷处理过程进行数值模拟.研究表明,试件心部和表面的冷却状况差异较大,尤其是温度和冷却速度.然而,这种温度和冷却速度的剧烈变化主要集中于从试件表面至内部的1/3厚度内,而在试件心部温度和冷却速度变化比较平缓.模拟结果与试验实测数据比较吻合,最大相对偏差为10.58%,这说明采用数值分析方法能较好的再现试件在深冷处理过程中的动态温度场变化规律,为后续组织性能评估以及深冷处理工艺的制定提供依据.","authors":[{"authorName":"黎军顽","id":"2acddf11-1cf2-4812-bc16-cd77fac46214","originalAuthorName":"黎军顽"},{"authorName":"闵娜","id":"0004e697-0895-4743-9b3f-3907e2ceb4a0","originalAuthorName":"闵娜"},{"authorName":"汤磊磊","id":"19d6c7e0-fca6-45e3-8cc0-d6aa1f76e6fd","originalAuthorName":"汤磊磊"},{"authorName":"吴晓春","id":"5d752d09-2314-4753-aa3d-cb601d067dbd","originalAuthorName":"吴晓春"}],"doi":"","fpage":"173","id":"8fa229c2-2e12-4221-80cf-b59450a71450","issue":"2","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"6a27dc60-f867-4d63-94f2-35ff03bc9ce2","keyword":"深冷处理","originalKeyword":"深冷处理"},{"id":"0ea33c8a-09a3-4e95-a8d5-5b552c811c2e","keyword":"有限元","originalKeyword":"有限元"},{"id":"79534962-ea80-4203-97ad-e3a3e3262c6e","keyword":"沸腾换热","originalKeyword":"沸腾换热"},{"id":"fb87c53c-cba8-4223-ac59-46549977a5bc","keyword":"冷作模具钢","originalKeyword":"冷作模具钢"}],"language":"zh","publisherId":"jsrclxb201302034","title":"SDC99冷作模具钢深冷处理试验及数值分析","volume":"34","year":"2013"},{"abstractinfo":"对高强韧冷作模具钢SDC55经液氮深冷处理后的组织和性能进行了研究.结果表明,经过深冷之后,SDC55钢的硬度和耐磨性都有很大的提高,并且其冲击韧性不会降低很多.对深冷后的SDC55钢进行了金相研究,运用扫描电镜对深冷后SDC55钢的组织和碳化物析出情况做原位比较研究.利用透射电镜和X射线应力仪分别对深冷后SDC55钢的组织和残留奥氏体进行微观研究.研究表明:深冷处理后SDC55钢的硬度和耐磨性显著提高的主要原因是由于深冷处理促进了残留奥氏体向马氏体转变和细小的ε-碳化物在马氏体上析出.","authors":[{"authorName":"邓黎辉","id":"0e7f0ef2-0def-42eb-a655-5c2ae1ea4539","originalAuthorName":"邓黎辉"},{"authorName":"汪宏斌","id":"b41d797c-8642-4655-b2d0-5efe1f428605","originalAuthorName":"汪宏斌"},{"authorName":"李绍宏","id":"d860b3b2-f414-41bf-8b98-8ebe0db146b1","originalAuthorName":"李绍宏"},{"authorName":"张银福","id":"099b95a9-3209-40c3-91b1-1d50e18e0ed8","originalAuthorName":"张银福"},{"authorName":"邓亚琪","id":"8a791ac2-916e-4100-8d26-32f1704fb3a5","originalAuthorName":"邓亚琪"},{"authorName":"吴晓春","id":"c3b0890b-83e0-48ab-9852-8990d0a8cf27","originalAuthorName":"吴晓春"}],"doi":"","fpage":"76","id":"7ff1fe5b-21d3-42be-b39e-f123d3582121","issue":"4","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"99dd2fc1-18f3-422a-9906-6a49953286e5","keyword":"冷作模具钢","originalKeyword":"冷作模具钢"},{"id":"50f77162-1ae2-46a1-ba70-f70978f7d56f","keyword":"深冷处理","originalKeyword":"深冷处理"},{"id":"e19e08fa-8e2a-4c56-9a95-73d32529072f","keyword":"原位观察","originalKeyword":"原位观察"},{"id":"0fa4bba7-ab0a-42f0-8ad8-50c5ab30ed6f","keyword":"组织","originalKeyword":"组织"},{"id":"e511d2d5-ec9b-4376-8a01-a82bf97a8e55","keyword":"性能","originalKeyword":"性能"}],"language":"zh","publisherId":"jsrclxb201104016","title":"高强韧冷作模具钢深冷处理性能及组织","volume":"32","year":"2011"},{"abstractinfo":"以自主开发的SDC99冷作模具钢C型环试样为研究对象,结合材料低温物性参数和由沸腾换热模型求解获得的沸腾换热系数,基于金属-热-力耦合理论建立了深冷处理的有限元模型,对C型环试样深冷处理进行数值模拟,研究了其温度场和组织场的演变特征.结果表明:深冷处理过程中,C型环试样缺口与中心部位的温度和冷却速率存在较大差异,尤其是冷却速率差异较大;深冷处理能有效减少残余奥氏体的含量,其体积分数由初始的15%减少到2.3%,同时马氏体的体积分数由85%提高至97.7%00;深冷处理后的残余奥氏体分布不均,主要聚集在试样的缺口附近;模拟结果与XRD试验测试结果非常吻合.","authors":[{"authorName":"黎军顽","id":"2b8543ab-176f-4dc3-9a71-71e0091d5051","originalAuthorName":"黎军顽"},{"authorName":"封源","id":"7eb8b2b5-5bb9-4a45-80b3-5c418774f2a7","originalAuthorName":"封源"},{"authorName":"吴晓春","id":"da960b7c-82ff-4848-a0bd-4b488bf13767","originalAuthorName":"吴晓春"}],"doi":"","fpage":"90","id":"ee0f82a0-c1b0-4054-8f83-7d719c4f0927","issue":"2","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"9c7cae73-bb5b-4e7e-9198-f730e2164a7b","keyword":"深冷处理","originalKeyword":"深冷处理"},{"id":"7a704e5f-0d8b-4743-9fd4-6751d8886ea1","keyword":"有限元","originalKeyword":"有限元"},{"id":"2ece8a07-e984-4267-9dce-5b81838e21dc","keyword":"C型环试样","originalKeyword":"C型环试样"},{"id":"61c72cc7-628f-441f-a3cf-f4a9b0b5b099","keyword":"冷作模具钢","originalKeyword":"冷作模具钢"}],"language":"zh","publisherId":"jxgccl201302023","title":"冷作模具钢C型环试样深冷处理的数值模拟","volume":"37","year":"2013"},{"abstractinfo":"通过炉前加入稀土硅铁合金、钛-铁和铌-铁对铸造高碳高合金冷作模具钢进行变质处理,利用扫描电镜、X射线能谱仪(EDS)及硬度仪等测试手段研究了该钢铸态及退火状态的微观成分、组织及性能特点.结果表明:经过变质处理细化了晶粒,使连续网状碳化物断开,改善了铸态原始粗大及不均匀组织,降低了钢的硬度,改善了机加工性能.","authors":[{"authorName":"刘炳","id":"6793e866-7283-42ff-96a6-ba5f7200d99c","originalAuthorName":"刘炳"},{"authorName":"蔡建国","id":"b246315e-1830-4489-8198-a03f136bbb49","originalAuthorName":"蔡建国"},{"authorName":"居来提·买提肉孜","id":"e5d36ea2-fefb-40c3-ba2c-82d9ea6f7122","originalAuthorName":"居来提·买提肉孜"}],"doi":"10.3969/j.issn.1000-3738.2006.09.014","fpage":"48","id":"8d193433-8f9c-47e7-9084-d03d39c361d9","issue":"9","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"bbf38cac-7fcc-4226-895c-7a14ea8b8e46","keyword":"冷作模具钢","originalKeyword":"冷作模具钢"},{"id":"77493828-085d-45dd-adde-04e6e8c33c10","keyword":"变质处理","originalKeyword":"变质处理"},{"id":"0e16d383-df03-4b91-8330-2605b488b681","keyword":"退火组织","originalKeyword":"退火组织"}],"language":"zh","publisherId":"jxgccl200609014","title":"新型高碳高合金冷作模具钢的退火组织和性能","volume":"30","year":"2006"},{"abstractinfo":"研究了高强韧低合金冷作模具钢的组织和性能.利用JMatpro相图计算辅助进行合金成分设计.运用SEM和TEM等研究了SDC55的微观组织特征和强韧化机制.结果表明,经过淬火回火后,SDC55的组织为回火马氏体基体上均匀分布着弥散细小的碳化物颗粒,残留奥氏体呈薄膜状包裹在马氏体边缘.经930℃淬火180℃两次两小时回火后,SDC55的冲击韧性达到158 J,硬度达到62 HRC.与D2钢比较,硬度基本相当,韧性显著提高.","authors":[{"authorName":"邓黎辉","id":"c105c8bc-364c-41d7-aa60-c9a7af96db06","originalAuthorName":"邓黎辉"},{"authorName":"汪宏斌","id":"af29699d-325f-4052-869d-44a6465f0741","originalAuthorName":"汪宏斌"},{"authorName":"李绍宏","id":"98b1cffc-af2c-440c-8e3c-8f662cd3131b","originalAuthorName":"李绍宏"},{"authorName":"吴晓春","id":"e37f9d4f-b583-4c8c-9199-8a0cadfc995c","originalAuthorName":"吴晓春"}],"doi":"","fpage":"80","id":"caaab9ae-4c22-483e-8435-43cb8ea6798a","issue":"12","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"9280925d-129e-48eb-9960-a2b40bed14a7","keyword":"冷作模具钢","originalKeyword":"冷作模具钢"},{"id":"0d6af777-d9a5-4303-a562-a4e56e06a53c","keyword":"热处理","originalKeyword":"热处理"},{"id":"b2814619-6461-4f8f-98d5-cb86f1f60887","keyword":"组织和性能","originalKeyword":"组织和性能"}],"language":"zh","publisherId":"jsrclxb201012016","title":"高强韧低合金冷作模具钢SDC55的组织和性能","volume":"31","year":"2010"},{"abstractinfo":"为了确定SDC90新型高强韧冷作模具钢的热处理工艺,采用光学显微镜、洛氏硬度计和冲击试验机等对其显微组织、硬度和冲击性能进行了研究,并与Cr12MoV钢进行了对比.结果表明:SDC90钢中的莱氏体、碳化物比Cr12MoV钢的更细小、分布更均匀;经1040℃淬火和210℃回火后,其硬度与Cr12MoV钢的相当,而冲击功却是它的2倍;该钢经1080℃淬火和540℃回火后,其硬度和冲击功均高于Cr12MoV钢的;该钢的高硬度与良好的强韧性配合可大大提高模具的使用寿命.","authors":[{"authorName":"谢殷子","id":"38fce3f7-ef32-4e20-80ca-ac5fdaf24d38","originalAuthorName":"谢殷子"},{"authorName":"吴晓春","id":"c4b1da79-b763-48ab-aea4-93dc03d9a5f9","originalAuthorName":"吴晓春"},{"authorName":"李绍宏","id":"fa7f9117-2d19-46e8-82ae-742746cc0654","originalAuthorName":"李绍宏"}],"doi":"","fpage":"54","id":"b90731af-a954-4152-aed9-7758387f4eaf","issue":"6","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"878d1d09-2792-4352-8345-0c5106daf854","keyword":"冷作模具钢","originalKeyword":"冷作模具钢"},{"id":"864cd6c8-72d0-4cf0-b79a-1aa083928df7","keyword":"热处理","originalKeyword":"热处理"},{"id":"64036b60-de33-429c-b458-7235e90a82c8","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"0eedcea4-34e0-4028-9a89-773fa0f2c2ba","keyword":"硬度","originalKeyword":"硬度"},{"id":"4f0ef150-c7f8-4c35-b61c-a5a003e1d2c8","keyword":"冲击性能","originalKeyword":"冲击性能"}],"language":"zh","publisherId":"jxgccl201006014","title":"热处理工艺对SDC90新型冷作模具钢组织与性能的影响","volume":"34","year":"2010"},{"abstractinfo":"采用OM、SEM并结合Thermo-calc计算和Image-proplus 6.0分析,研究了不同奥氏体化温度对冷作模具D2(Cr12Mo1V1)和DC53(Cr8Mo2SiV)钢碳化物溶解情况的影响.结果表明:在950℃以后,两种钢中的碳化物的体积分数相差10%左右,D2钢的碳化物类型主要为M7 C3型,DC53钢的碳化物在低于1 000℃时主要为M23 C6型,高于1 000℃时为M7 C3型.高于1 200℃时,DC53钢碳化物基本溶解,而D2钢在1 300℃高温时还有少量的碳化物.平均粒径为0.2~0.4 μm的碳化物数量最多,在0.6~1.2μm粒径区间的碳化物数量随温度的增高而递减.随着奥氏体化温度的升高,未溶碳化物的面积分数逐渐减少,并得到了未溶碳化物体积分数、面积分数随加热温度变化的拟合方程.","authors":[{"authorName":"占礼春","id":"e0a7b034-e1f1-45f9-98f5-03330366f1a6","originalAuthorName":"占礼春"},{"authorName":"马党参","id":"14a790e4-db0e-41e2-b8fd-7679575f9490","originalAuthorName":"马党参"},{"authorName":"迟宏宵","id":"a5073049-8d04-47cd-b105-f275152f1b0c","originalAuthorName":"迟宏宵"},{"authorName":"周健","id":"8eba6ad0-55d6-4be4-9baa-752a79b356a8","originalAuthorName":"周健"},{"authorName":"蒋业华","id":"d8c7ad7a-5958-4282-b3ef-97c9331f0c69","originalAuthorName":"蒋业华"}],"doi":"","fpage":"29","id":"5fdd787c-e3b2-4801-89d6-07398b10bae5","issue":"10","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"37bb789b-8756-46d1-becb-bd791ff14b41","keyword":"冷作模具钢","originalKeyword":"冷作模具钢"},{"id":"435efa0f-01d6-46bd-af61-e969e53c9bb8","keyword":"奥氏体化","originalKeyword":"奥氏体化"},{"id":"294bb1d8-e979-4dff-a43e-957c7598ebca","keyword":"碳化物溶解","originalKeyword":"碳化物溶解"},{"id":"431a8004-a11f-4e07-a867-d717d007492a","keyword":"拟合","originalKeyword":"拟合"}],"language":"zh","publisherId":"gtyjxb201210007","title":"冷作模具钢奥氏体化过程的碳化物溶解情况","volume":"24","year":"2012"}],"totalpage":2411,"totalrecord":24103}