{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"研究了稀土元素对齿轮钢碳氮共渗过程及其摩擦磨损性能的影响.结果表面:稀土对齿轮钢碳氮共渗过程有明显的催渗作用;稀土在碳氮共渗中渗入钢表面起微合金化作用改善了渗层组织;稀土碳氮共渗处理后的抗磨损性能及抗滑动磨损性能均明显优于普通碳氮共渗处理.","authors":[{"authorName":"上官倩芡","id":"03149736-486e-4364-ad81-066bf9f5d737","originalAuthorName":"上官倩芡"},{"authorName":"程先华","id":"49d8e7e6-603a-40e6-8288-b9090c198394","originalAuthorName":"程先华"}],"doi":"10.3969/j.issn.1001-1560.2004.z1.031","fpage":"109","id":"5aa582c4-f901-49c2-8e7e-ce76fbaa7fc1","issue":"z1","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"c0c9a454-c424-46e0-9298-2c8ebe51dda4","keyword":"稀土","originalKeyword":"稀土"},{"id":"5ea3c6e2-fba1-4ff9-8ffc-a4f7ee3b31e9","keyword":"碳氮共渗","originalKeyword":"碳氮共渗"},{"id":"2fbe6364-e041-46eb-b299-8748e4eef61d","keyword":"20CrMnTi钢","originalKeyword":"20CrMnTi钢"},{"id":"8ed1225d-a1a4-42cd-9b1e-b3e42ac9f555","keyword":"12CrNi3钢","originalKeyword":"12CrNi3钢"},{"id":"6486326c-05ee-47ec-b4b3-dd1350a7fa6b","keyword":"磨损性能","originalKeyword":"干磨损性能"},{"id":"d1ba16a6-04e2-4478-b438-d3941ddd1ffc","keyword":"滑动磨损性能","originalKeyword":"滑动磨损性能"}],"language":"zh","publisherId":"clbh2004z1031","title":"齿轮用钢稀土碳氮共渗层摩擦学性能研究","volume":"37","year":"2004"},{"abstractinfo":"研究了石墨含量和载荷等对青铜-石墨复合粉末热喷涂自润滑涂层滑动摩擦磨损性能的影响.结果表明:青铜-石墨热喷涂层有很好的自润滑性能,石墨含量为6%的涂层抗磨损性能最优.","authors":[{"authorName":"支龙","id":"ace9e1f3-fb6d-42fa-92b8-c87d67ea45b9","originalAuthorName":"支龙"},{"authorName":"王耀华","id":"dfeddb23-4a44-47c0-b2bc-5e0d03244e7f","originalAuthorName":"王耀华"},{"authorName":"谭业发","id":"7f0a84ee-25e1-4995-9212-aff468b0a2fe","originalAuthorName":"谭业发"}],"doi":"10.3969/j.issn.1000-3738.2005.01.015","fpage":"46","id":"c2d1cb80-ca02-42ea-a3b8-9fa9d2672766","issue":"1","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"67caace8-d9d4-4995-bb9e-d34adb3ea4b7","keyword":"热喷涂","originalKeyword":"热喷涂"},{"id":"827ad34c-3076-469c-a183-ce207db3f15d","keyword":"石墨","originalKeyword":"石墨"},{"id":"5e2f860c-b0c5-4f2c-9fd1-d0d46c23e81a","keyword":"青铜","originalKeyword":"青铜"},{"id":"4ed2accd-a677-4f51-aa85-a6c22ad2182a","keyword":"自润滑","originalKeyword":"自润滑"},{"id":"79735960-7d01-4b64-a31c-53994e852f37","keyword":"摩擦磨损","originalKeyword":"摩擦磨损"}],"language":"zh","publisherId":"jxgccl200501015","title":"青铜-石墨复合粉末热喷涂层的滑动摩擦磨损性能","volume":"29","year":"2005"},{"abstractinfo":"利用环-盘式摩擦磨损试验机研究了铜碲硒铁合金的摩擦磨损行为,分析了载荷和摩擦速度等参数对该合金摩擦磨损性能的影响,并用扫描电子显微镜对磨损形貌进行了观察.结果表明:铜碲硒铁合金的摩擦因数随载荷的增加变化不大,但随摩擦速度的增加而明显增大;合金的磨损率随载荷和摩擦速度的增加均增大;在轻载低速条件下,合金的磨损机制以犁削磨损和粘着磨损为主;在重载高速条件下,磨粒磨损和粘着磨损加剧.","authors":[{"authorName":"薛云","id":"420bbd8a-fc13-4535-8c50-855aee91fbd8","originalAuthorName":"薛云"}],"doi":"","fpage":"90","id":"088375ab-4bea-4a17-b225-48f76647ab76","issue":"6","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"dd67ccde-0847-407f-8ad6-52e269876770","keyword":"铜碲硒铁合金","originalKeyword":"铜碲硒铁合金"},{"id":"66936a09-f2c0-4eab-8eca-4f363984559f","keyword":"摩擦磨损","originalKeyword":"摩擦磨损"},{"id":"8d594d7e-e7b0-43ba-845f-38b369deca1d","keyword":"载荷","originalKeyword":"载荷"},{"id":"8580a2eb-b647-445f-aa65-6dad192ef93f","keyword":"摩擦速度","originalKeyword":"摩擦速度"}],"language":"zh","publisherId":"jxgccl200906025","title":"铜碲硒铁合金的摩擦磨损性能","volume":"33","year":"2009"},{"abstractinfo":"用销-盘式高温摩擦磨损实验机研究了LF3铝合金及三维网络SiC(体积分数分别为10%、20%、30%)增强LF3铝基复合材料的摩擦磨损性能,测量了复合材料及基体合金在室温和温(25-300℃)条件下的摩擦系数和磨损率, 用扫描电镜(SEM)观察其磨损表面,研究了三维络SiC对铝合金磨损机制的影响. 结果表明:复合材料的摩擦磨损性能远优于基体合金(LF3), 而且随着温度的升高,复合材料的抗磨损性能明显提高.三维网络SiC在磨损表面形成硬的微凸体起承载作用,同时其独特的结构制约基体合金的塑性变形和高温软化,并保护在磨损表面形成的氧化膜. 在相同实验条件下,复合材料的摩擦系数、磨损率随着增强体的体积分数的增加而降低.复合材料的摩擦系数在滑行过程中的稳定性明显高于基体合金.","authors":[{"authorName":"谢素菁","id":"76380bb1-a1be-460d-bc11-be2d5bcb6ef4","originalAuthorName":"谢素菁"},{"authorName":"曹小明","id":"0fea57b1-e072-4e0a-8b4c-0fa614e0973d","originalAuthorName":"曹小明"},{"authorName":"张劲松","id":"b7372b8c-76c3-4f63-ae8e-02212f7c255f","originalAuthorName":"张劲松"},{"authorName":"李曙","id":"9d626578-666a-4794-9b39-e0db32cd268c","originalAuthorName":"李曙"},{"authorName":"刘阳","id":"62209841-efb9-473d-9ec5-75ca7f7591c0","originalAuthorName":"刘阳"}],"categoryName":"|","doi":"","fpage":"10","id":"8de343ae-7178-4242-a4ce-9cbff89b445f","issue":"1","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"ca35796f-6d13-4191-a9c6-e08d1191e3c0","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"5b512054-6134-49dd-92cc-802c3012ee92","keyword":"null","originalKeyword":"null"},{"id":"7af703e4-c8a6-48c4-8857-8007daeaf588","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"1005-3093_2003_1_2","title":"三维网络SiC对铝合金摩擦磨损性能的影响","volume":"17","year":"2003"},{"abstractinfo":"用销-盘式高温摩擦磨损实验机研究了LF3铝合金及三维网络SiC(体积分数分别为10%、20%、30%)增强LF3铝基复合材料的摩擦磨损性能,测量了复合材料及基体合金在室温和高温(25~300℃)条件下的摩擦系数和磨损率,用扫描电镜(SEM)观察其磨损表面,研究了三维网络SiC对铝合金磨损机制的影响.结果表明:复合材料的摩擦磨损性能远优于基体合金(LF3),而且随着温度的升高,复合材料的抗磨损性能明显提高.三维网络SiC在磨损表面形成硬的微凸体起承载作用,同时其独特的结构制约基体合金的塑性变形和高温软化,并保护在磨损表面形成的氧化膜.在相同实验条件下,复合材料的摩擦系数、磨损率随着增强体的体积分数的增加而降低.复合材料的摩擦系数在滑行过程中的稳定性明显高于基体合金.","authors":[{"authorName":"谢素菁","id":"cfba89f2-445a-4b7b-a878-e626e9a4830d","originalAuthorName":"谢素菁"},{"authorName":"曹小明","id":"1365e5d0-8b37-42fe-b9a8-f49670792a74","originalAuthorName":"曹小明"},{"authorName":"张劲松","id":"65190331-e437-46ce-b82f-8829e10e854c","originalAuthorName":"张劲松"},{"authorName":"李曙","id":"e302b006-2cbc-4865-b927-ed5d6f1ea3c0","originalAuthorName":"李曙"},{"authorName":"刘阳","id":"b0786505-9af6-4893-ae11-7ad20c18ad04","originalAuthorName":"刘阳"}],"doi":"10.3321/j.issn:1005-3093.2003.01.002","fpage":"10","id":"665cfb7d-bbf4-4a53-9e35-7c266263c9ff","issue":"1","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"1ff54d82-51e0-4d9d-a0de-65d572b63374","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"1c840a51-94aa-49b3-9bd8-f6ec9baf8cf6","keyword":"磨擦磨损性能","originalKeyword":"磨擦磨损性能"},{"id":"1c9d7949-c001-45cb-97a5-a95879dddd6a","keyword":"摩擦磨损","originalKeyword":"干摩擦磨损"},{"id":"31955011-c0fe-474c-bd3c-ac6729de42ac","keyword":"三维网络SiC","originalKeyword":"三维网络SiC"},{"id":"6da78129-0819-4732-bc3c-999f19b780b2","keyword":"磨损率","originalKeyword":"磨损率"}],"language":"zh","publisherId":"clyjxb200301002","title":"三维网络SiC对铝合金摩擦磨损性能的影响","volume":"17","year":"2003"},{"abstractinfo":"利用激光熔覆技术制备微米团聚和块状两种不同类型WC/Ni基复合涂层。在MMG-10型摩擦磨损试验机上对涂层进行高温滑动摩擦磨损实验,并用SEM和EDS对涂层进行磨损形貌观察和成分分析。结果表明,激光熔覆WC/Ni基复合涂层高温磨损性能随着WC含量增加而提高,WC形态为微米团聚质量分数为60%的复合涂层具有优良的高温耐磨性能。高温下60%WC/Ni基复合涂层主要磨损机制由低温下的磨料磨损转变为氧化磨损和磨料磨损复合作用。","authors":[{"authorName":"杨胶溪","id":"402a026d-dd40-4cad-8834-f399af98ffcb","originalAuthorName":"杨胶溪"},{"authorName":"张健全","id":"3d54b423-007f-4026-9bb0-8bf2c4b7522f","originalAuthorName":"张健全"},{"authorName":"常万庆","id":"9b91ef47-e856-4a2e-98a1-2709bf07614a","originalAuthorName":"常万庆"},{"authorName":"王艳芳","id":"40fe7825-a494-4602-aae9-c75d783c81c4","originalAuthorName":"王艳芳"},{"authorName":"陈虹","id":"7d72a4dd-6b67-4ab8-80f7-07866dc17fa7","originalAuthorName":"陈虹"},{"authorName":"王喜兵","id":"56216b8d-ae9b-4b64-9382-1b90b3c7c356","originalAuthorName":"王喜兵"}],"categoryName":"测试与表征","doi":"10.11868/j.issn.1001-4381.2016.06.017","fpage":"110","id":"d49064ce-a8fe-4ba6-b549-aa993abcf748","issue":"6","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"8f945c52-4258-420f-9e67-b6e66c4768f1","keyword":"激光熔覆","originalKeyword":"激光熔覆"},{"id":"b9828dd3-e924-40b0-aeb6-cb87a625669b","keyword":"复合涂层","originalKeyword":"复合涂层"},{"id":"cdc43322-1cf4-44f3-b992-38833e2f79b6","keyword":"碳化钨","originalKeyword":"碳化钨"},{"id":"37fc8086-6957-4d7d-bc47-2843f325a327","keyword":"高温滑动摩擦","originalKeyword":"高温滑动干摩擦"},{"id":"bb917d33-66b9-427f-ad5c-d27da6be050e","keyword":"磨损性能","originalKeyword":"磨损性能"}],"language":"zh","publisherId":"clgc-44-06-110","title":"激光熔覆WC/Ni基复合涂层高温滑动摩擦磨损性能","volume":"44","year":"2016"},{"abstractinfo":"利用激光熔覆技术制备微米团聚和块状两种不同类型WC/Ni基复合涂层.在MMG-10型摩擦磨损试验机上对涂层进行高温滑动摩擦磨损实验,并用SEM和EDS对涂层进行磨损形貌观察和成分分析.结果表明,激光熔覆WC/Ni基复合涂层高温磨损性能随着WC含量增加而提高,WC形态为微米团聚质量分数为60%的复合涂层具有优良的高温耐磨性能.高温下60% WC/Ni基复合涂层主要磨损机制由低温下的磨料磨损转变为氧化磨损和磨料磨损复合作用.","authors":[{"authorName":"杨胶溪","id":"92394a72-247b-44fc-9522-6bac26911c55","originalAuthorName":"杨胶溪"},{"authorName":"张健全","id":"1cb602ae-1da5-4c6a-be39-f5bfc6930670","originalAuthorName":"张健全"},{"authorName":"常万庆","id":"352db924-fee1-4130-a3d9-80e4b1dd7b9b","originalAuthorName":"常万庆"},{"authorName":"王艳芳","id":"3edcff5a-2ee8-4027-8733-eaa66478ec31","originalAuthorName":"王艳芳"},{"authorName":"陈虹","id":"10dcbd64-dad2-40d8-b276-6f1d4e27c074","originalAuthorName":"陈虹"},{"authorName":"王喜兵","id":"362046c8-3573-4d7a-bc0f-473320e4f0f7","originalAuthorName":"王喜兵"}],"doi":"10.11868/j.issn.1001-4381.2016.06.017","fpage":"110","id":"a67191dc-42c7-4c17-af9a-5a20f6e26804","issue":"6","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"1a729d92-8a40-413e-b5e9-3b0c8647147e","keyword":"激光熔覆","originalKeyword":"激光熔覆"},{"id":"df3f2779-3a30-442d-93f8-b8cfbfb44f0b","keyword":"复合涂层","originalKeyword":"复合涂层"},{"id":"a489e5ff-0f6b-4786-a29a-db48cb16ee63","keyword":"碳化钨","originalKeyword":"碳化钨"},{"id":"0e220fbf-da7f-41b8-8b1c-a4c9e7208a34","keyword":"高温滑动摩擦","originalKeyword":"高温滑动干摩擦"},{"id":"4cf6be8b-c038-40e0-a4c8-0f175f83844f","keyword":"磨损性能","originalKeyword":"磨损性能"}],"language":"zh","publisherId":"clgc201606017","title":"激光熔覆WC/Ni基复合涂层高温滑动摩擦磨损性能","volume":"44","year":"2016"},{"abstractinfo":"采用摩擦磨损试验机研究不同滑动距离下的SiC颗粒增强铝基复合材料( SiC体积含量为9%)的摩擦磨损性能。在载荷45 N(5 MPa)、转速200 r/min、转动距离分别为5000 r、10000 r以及20000 r条件下,进行连续滑动摩擦实验。结果表明:在长程连续滑动下,其摩擦系数变化可分为磨合区、缓慢上升区、加速上升区3个阶段;随着摩擦距离的增加,基体表面的温度急剧升高,进而发生黏着磨损,产生塑性流变区,多种摩擦方式并存使得该条件下摩擦系数与磨损量均增加。","authors":[{"authorName":"戴礼权","id":"ef7855e2-0253-4334-b786-3be96c96af7c","originalAuthorName":"戴礼权"},{"authorName":"何国球","id":"b419535e-b081-4233-96ae-ea5583b1fe87","originalAuthorName":"何国球"},{"authorName":"吕世泉","id":"6f3fe5ff-615e-4d4a-bf4c-6620e6ec6e94","originalAuthorName":"吕世泉"},{"authorName":"叶赟","id":"4f7f9c43-5e97-4eab-9d37-d97ed1836682","originalAuthorName":"叶赟"},{"authorName":"刘晓山","id":"95dcbe18-1e76-4eac-92ec-63f4d5247a0e","originalAuthorName":"刘晓山"},{"authorName":"卢棋","id":"998d075f-4e35-40a9-8fe6-a7c479c20c5b","originalAuthorName":"卢棋"}],"doi":"10.11868/j.issn.1005-5053.2016.6.010","fpage":"61","id":"86feca58-b8cc-4194-9fb7-ec9428f9758d","issue":"6","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"dc3f11d5-ad64-4016-852e-c3da0b808b00","keyword":"SiC颗粒增强铝基复合材料","originalKeyword":"SiC颗粒增强铝基复合材料"},{"id":"8c2ff15f-9c33-4c93-9900-2d08c91d176b","keyword":"滑动摩擦","originalKeyword":"干滑动摩擦"},{"id":"17e7bb2b-a6ee-45c5-9614-666983090380","keyword":"塑性流变区","originalKeyword":"塑性流变区"},{"id":"b25b8902-2073-4c51-aaa8-c423e7a153b9","keyword":"摩擦系数","originalKeyword":"摩擦系数"},{"id":"087153fa-dd72-41b7-bbb3-2d39fa603049","keyword":"磨损率","originalKeyword":"磨损率"}],"language":"zh","publisherId":"hkclxb201606010","title":"滑动摩擦下SiC/Al复合材料摩擦磨损性能","volume":"36","year":"2016"},{"abstractinfo":"利用MM-200型环-块摩擦磨损试验机研究了纳米陶瓷颗粒SiC、Si_3N_4、AlN和TiN对聚四氟乙烯(PTFE)复合材料在摩擦条件下与45#钢对磨时的摩擦磨损性能的影响,借助于扫描电子显微镜观察分析了试样磨损表面形貌,并探讨了磨损机理.结果表明:添加纳米TiN减少了PTFE的摩擦系数,而添加纳米SiC、Si_3N_4增大了PTFE的摩擦系数.与纯PTFE相比,PTFE复合材料的耐磨性能显著提高,其中以纳米AlN的减磨效果最好,纳米Si_3N_4的减磨效果最差.纯PTFE的磨损机制主要表现为粘着磨损和疲劳磨损,而纳米粒子填充PTFE基复合材料的磨损机制主要表现为不同程度的粘着磨损、犁沟效应和塑性变形特征.","authors":[{"authorName":"路琴","id":"82d50356-048a-411f-a7fb-3c5aa7297734","originalAuthorName":"路琴"},{"authorName":"杨和梅","id":"74a8e99f-3982-434e-9d13-ebd5f61d8079","originalAuthorName":"杨和梅"},{"authorName":"何春霞","id":"7c5a70cc-66d8-4c20-ae8e-e79050431c00","originalAuthorName":"何春霞"}],"doi":"","fpage":"81","id":"c9eed9ec-ec8b-45aa-b1fd-d3f94487b470","issue":"1","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"f80fc6ad-9d25-4ca1-80a2-4ed0ee2a31dc","keyword":"聚四氟乙烯","originalKeyword":"聚四氟乙烯"},{"id":"6c98cdef-fae4-48c9-94ea-f210b8dbf879","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"ad12d6f9-aacf-44be-8465-eba62d2ba468","keyword":"纳米陶瓷颗粒","originalKeyword":"纳米陶瓷颗粒"},{"id":"2897dd99-ebc4-4d62-b402-859efe0823a8","keyword":"摩擦磨损性能","originalKeyword":"摩擦磨损性能"}],"language":"zh","publisherId":"clkxygc201001019","title":"纳米陶瓷颗粒填充PTFE基复合材料的摩擦磨损性能","volume":"28","year":"2010"},{"abstractinfo":"在SiC-Si中加入Ni、Ti或B4C形成SiC-Si-Ni、SiC-Si-Ti及SiC-Si-B等复相陶瓷材料.研究了不同温度下的摩擦磨损行为与机理.探讨了在摩擦表面形成固体润滑与液体润滑,以改善摩擦磨损性能的两种途径在SiC-Si复相陶瓷上实现的可行性.结果表明,通过摩擦反应在表面形成固体润滑膜,是改善SiC-Si复相陶瓷摩擦性能的有效途径.","authors":[{"authorName":"桑可正","id":"de33bb61-a5e2-406c-a047-24be0fef8636","originalAuthorName":"桑可正"},{"authorName":"刘林","id":"dcd3732e-7782-46db-a243-2b2adc8571cb","originalAuthorName":"刘林"},{"authorName":"傅恒志","id":"d41f834c-d76a-436b-be91-699ecca589a2","originalAuthorName":"傅恒志"}],"doi":"10.3969/j.issn.1003-1545.2005.04.001","fpage":"1","id":"83e83c4e-3e2b-43e3-a3f9-c4983f23c753","issue":"4","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"82e9a229-8d68-4747-914e-1fea51393e30","keyword":"碳化硅","originalKeyword":"碳化硅"},{"id":"00cd481d-5aa6-448f-a76b-506462da4794","keyword":"摩擦磨损","originalKeyword":"摩擦磨损"},{"id":"fefd4898-4b15-41db-bef9-87066319ecf9","keyword":"合金化","originalKeyword":"合金化"}],"language":"zh","publisherId":"clkfyyy200504001","title":"SiC-Si合金化复相陶瓷摩擦磨损性能的研究","volume":"20","year":"2005"}],"totalpage":8855,"totalrecord":88541}