{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用溶液聚合法制备了煅烧高岭土/PAA-AM高吸水保水复合材料,使用SEM观察了复合材料的表面形貌,讨论了各种因素对复合材料的吸水和保水性能的影响.结果表明:通过复合,煅烧高岭土粉体颗粒以片状形态均匀分散于PAA-AM基体中,当丙烯酰胺用量为15%,引发剂用量为0.25%,交联剂用量为0.08%,中和度为80%,煅烧高岭土添加量为60%时,复合材料吸蒸馏水倍率达646 g/g,常温放置15 d和50℃放置6h后的保水率分别为61.5%和87.1%,较添加矿物前均有提高.","authors":[{"authorName":"沈上越","id":"878a2dab-ec48-4e04-84e1-447bdb1832fb","originalAuthorName":"沈上越"},{"authorName":"夏开胜","id":"da9c3dcd-85f9-4d55-ab05-acaa2cdccb69","originalAuthorName":"夏开胜"},{"authorName":"范力仁","id":"aae43a62-683c-443d-833c-24a29c986300","originalAuthorName":"范力仁"},{"authorName":"舒小伟","id":"9f8ef0e9-f826-47a2-a570-961a7f2537e5","originalAuthorName":"舒小伟"}],"doi":"","fpage":"154","id":"136f4fb9-8041-415e-b12e-77e7debf9069","issue":"1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"89edfd95-9478-4eb4-9606-076e766cbb81","keyword":"高吸水保水材料","originalKeyword":"高吸水保水材料"},{"id":"7caf2509-5d88-4a58-8169-b95f92d7e408","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"48ee1e33-933e-4eaf-9baf-434b9b5b8b69","keyword":"煅烧高岭土","originalKeyword":"煅烧高岭土"},{"id":"4cbad117-ee99-4001-9a85-38057395b74f","keyword":"PAA-AM","originalKeyword":"PAA-AM"}],"language":"zh","publisherId":"gncl200701046","title":"煅烧高岭土/PAA-AM高吸水保水复合材料的合成与性能研究","volume":"38","year":"2007"},{"abstractinfo":"对PVA/PAA-AM高吸水纤维的形态结构进行了研究.以AA、AM为单体,在PVA 溶液中二元共聚,并由聚合物溶液纺丝制备出高吸水纤维.分别采用WAXD和SEM对共混纤维的结晶性和相容性进行测定,WAXD证明,纤维中只存在PVA的结晶,其结晶性能随纤维组成、热处理温度、热处理时间变化.SEM观察表明,高吸水纤维在形态上具有微相分离海岛型结构,PAA-AM在纤维中形成均匀分散的颗粒,随AM加入量的增加,颗粒的数目增加.","authors":[{"authorName":"邓新华","id":"27413f1d-d7b5-408c-a61d-88c92a2cdad8","originalAuthorName":"邓新华"},{"authorName":"孙元","id":"01d87c56-e1a5-456f-9366-34f0c0e72531","originalAuthorName":"孙元"},{"authorName":"边栋才","id":"2274373d-1e34-465d-a339-126211138974","originalAuthorName":"边栋才"},{"authorName":"张爽","id":"2afb908f-64a3-4d10-9594-ba5ebe33ce4c","originalAuthorName":"张爽"}],"doi":"","fpage":"126","id":"456f2436-3a9a-41ca-bc8e-376a1736c359","issue":"6","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"2210af60-4a1b-4177-872b-8ed9f8957503","keyword":"高吸水纤维","originalKeyword":"高吸水纤维"},{"id":"a7366d56-e08c-426d-964d-a5decb77eba5","keyword":"形态结构","originalKeyword":"形态结构"},{"id":"4a901672-5976-45bc-b2c2-7d4e08b5a965","keyword":"微相分离","originalKeyword":"微相分离"},{"id":"e3de2ec9-e87f-49ae-9a47-ff07d07ce344","keyword":"丙烯酸-丙烯酰胺共聚物","originalKeyword":"丙烯酸-丙烯酰胺共聚物"},{"id":"04400761-7131-4e46-a182-fe30d6a6b50e","keyword":"聚乙烯醇","originalKeyword":"聚乙烯醇"}],"language":"zh","publisherId":"gfzclkxygc200506032","title":"VA/PAA-AM共混高吸水纤维的形态结构","volume":"21","year":"2005"},{"abstractinfo":"高吸水树脂具有良好的吸水性、保水性及耐盐性,受到广泛的关注及应用.研究了不同阴、阳离子强度、pH值及不同质地的土壤对聚(丙烯酸-丙烯酰胺)(PAA-AM)树脂的吸水保水性能的影响.结果表明,对于不同价态的阴、阳离子盐溶液,其对树脂吸液性能影响的大小顺序为三价>二价>一价;树脂在酸碱性环境中的最佳使用条件为pH值=6~8;在不同泥沙比的土壤中施加PAA-AM树脂,能显著改善土壤的蓄水保水能力及土壤团粒结构,其中施加PAA-AM树脂的沙土蓄水保水能力优于经同样处理的其它土壤,故PAA-AM树脂更适合施用于沙性土质土壤中.","authors":[{"authorName":"刘玉贵","id":"40e13c05-e94e-4d40-8ff6-530a3cb598cf","originalAuthorName":"刘玉贵"},{"authorName":"张瑾","id":"d8cdc89b-f2fc-4f55-a9da-d9b63f7dde7f","originalAuthorName":"张瑾"},{"authorName":"朱忠其","id":"1d730fd9-6e57-43c4-9a85-35d1bcecfc9f","originalAuthorName":"朱忠其"},{"authorName":"刘强","id":"522c9ff2-7b11-4afd-873a-b0f0798af6da","originalAuthorName":"刘强"},{"authorName":"柳清菊","id":"07898a98-f427-4756-a303-573786ebc61b","originalAuthorName":"柳清菊"}],"doi":"10.3969/j.issn.1001-9731.2013.13.005","fpage":"1842","id":"0f9e1f44-030f-471f-9d53-d5597e61c583","issue":"13","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"42966b53-451f-4e65-9848-2a6e04fad265","keyword":"高吸水树脂","originalKeyword":"高吸水树脂"},{"id":"1e0a87f0-4492-42f2-a300-eaf72e492420","keyword":"pH值","originalKeyword":"pH值"},{"id":"e7a42b30-9022-4705-a76d-41a89f0a4a0c","keyword":"土壤","originalKeyword":"土壤"},{"id":"7e41926b-95f8-4fc9-9406-fd7858d17279","keyword":"离子强度","originalKeyword":"离子强度"},{"id":"8d649a89-6b1f-4112-b993-72289c75a72f","keyword":"丙烯酸","originalKeyword":"丙烯酸"}],"language":"zh","publisherId":"gncl201313005","title":"聚(丙烯酸-丙烯酰胺)高吸水树脂吸水保水性能研究","volume":"44","year":"2013"},{"abstractinfo":"借助凝胶时间、DSC和TGA等测试研究了PN-PAA和MPN-PAA共混树脂的热固化过程和热分解过程.凝胶时间(140℃)结果表明共混树脂的交联反应速率比PAA明显趋缓;PN-PAA(1:1)、MPN-PAA(1:1)共混树脂的固化温度比PAA提高约50℃;Kissinger公式和Crane公式计算表明共混树脂比PAA树脂具有更大的热固化反应活化能,但具有基本相同的反应级数;TGA结果表明共混树脂固化物具有很好的热稳定性,其起始热分解温度接近400℃.采用Coats-Redfern方程分析、解释了树脂热分解过程的表观动力学.与PAA树脂比较,共混树脂固化工艺性有较大改善,并具有较好的耐热性,有望用作高温防热复合材料的基体.","authors":[],"doi":"","fpage":"25","id":"23aa0cf2-0687-4dd5-bfe3-cf62cf04b6bd","issue":"5","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"769c7902-3f29-4383-b44e-95a3ad19f1d8","keyword":"PAA","originalKeyword":"PAA"},{"id":"218e2261-fb83-4bad-8c60-c0bbc77ff95b","keyword":"共混树脂","originalKeyword":"共混树脂"},{"id":"edc4b3ce-1b9d-45eb-a11b-725ef7fc907b","keyword":"热固化","originalKeyword":"热固化"},{"id":"9e916633-42ab-413a-bb2e-9e1d8e70e56d","keyword":"热分解","originalKeyword":"热分解"}],"language":"zh","publisherId":"yhclgy200505006","title":"PN-PAA、MPN-PAA共混树脂热固化过程和热分解过程的研究","volume":"35","year":"2005"},{"abstractinfo":"以两亲性嵌段共聚物苯乙烯-丙烯酸两嵌段共聚物(PS-b-PAA)在选择性溶剂甲苯中形成的胶束为模板,制得了尺寸均匀的金纳米颗粒,使用透射电镜和紫外吸收光谱对制得的纳米颗粒进行了表征.实验发现PS-b-PAA羧酸基团与HAuCl4有弱的相互作用;改变HAuCl4与羧酸基团的摩尔比可以得到不同尺寸的纳米颗粒;当体系中HAuCl4与羧酸基团摩尔比大于0.3时,过量的HAuCl4不能进入胶束核内,而是在溶剂中析出,纳米颗粒尺寸也不再随之增大.","authors":[{"authorName":"王勇","id":"6c9934aa-142b-4824-83f2-dc1d67dbd932","originalAuthorName":"王勇"},{"authorName":"彭英春","id":"19ca6fce-df4d-49b2-8c48-4faf9bd28105","originalAuthorName":"彭英春"},{"authorName":"姬相玲","id":"8b9a2ca6-361d-4aac-9872-c13de5b415a0","originalAuthorName":"姬相玲"},{"authorName":"姜炳政","id":"0fe0e252-5120-42a0-9b7d-5b12a0c748b1","originalAuthorName":"姜炳政"}],"doi":"","fpage":"195","id":"21273ad7-fbf7-457a-976d-b5a7c42b3fe6","issue":"2","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"78b30d36-b5d8-4ba7-9fd7-a18b26f281a6","keyword":"苯乙烯-丙烯酸两嵌段共聚物","originalKeyword":"苯乙烯-丙烯酸两嵌段共聚物"},{"id":"77cdeda5-07a5-49c4-84fd-6940cfcee5ae","keyword":"胶束","originalKeyword":"胶束"},{"id":"33088e57-af8a-46dd-989d-48d25de66b41","keyword":"金纳米颗粒","originalKeyword":"金纳米颗粒"}],"language":"zh","publisherId":"gfzclkxygc200402052","title":"PS-b-PAA模板制备金纳米颗粒","volume":"20","year":"2004"},{"abstractinfo":"通过PIP工艺制备了C/C-PAA、C/C-FA复合材料,对PAA、FA裂解碳的XRD、浸渍效果以及C/C-PAA和C/C-FA的弯曲强度进行了分析.结果表明:PAA裂解碳的炭质量、浸渍效果较好,C/C-PAA弯曲强度比C/C-FA弯曲强度高34.9%,弯曲模量对比不明显.","authors":[{"authorName":"张万强","id":"aa1453dc-76a8-480b-b92f-a90c40c0c4f7","originalAuthorName":"张万强"},{"authorName":"赵英民","id":"a92e4e60-e2b8-4402-b4f4-412a2f663168","originalAuthorName":"赵英民"},{"authorName":"王涛","id":"8b0b72da-fea1-413d-89ef-218af1a306bc","originalAuthorName":"王涛"},{"authorName":"詹万初","id":"15d99d71-7960-46ad-b564-759078fb9773","originalAuthorName":"詹万初"}],"doi":"10.3969/j.issn.1007-2330.2014.05.012","fpage":"55","id":"87e058fa-4c5e-414b-ba84-77c7b20a91ae","issue":"5","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"c5c4cb44-6515-43b7-8979-cf8b27d4644b","keyword":"聚芳基乙炔","originalKeyword":"聚芳基乙炔"},{"id":"2284bb2a-7a4b-4674-9a0d-e57b00a5ec7a","keyword":"糠酮树脂","originalKeyword":"糠酮树脂"},{"id":"e44168b2-c7f6-4f68-a871-f8d52c92682c","keyword":"X射线衍射","originalKeyword":"X射线衍射"},{"id":"413f9215-381b-486b-adf4-9f9a2bd5b15e","keyword":"C/C复合材料","originalKeyword":"C/C复合材料"}],"language":"zh","publisherId":"yhclgy201405012","title":"C/C-PAA与C/C-FA弯曲性能对比","volume":"44","year":"2014"},{"abstractinfo":"采用一步法将丙烯酸(AA)在明胶(Gel)模板上原位聚合自组装成核壳结构纳米微球.结合制备浓度、溶液的酸度和反应物重量比的变化分析了微球的结构与制备条件的关联性,并对微球的聚集情况和浓度的关系进行了系统的研究.红外光谱(FTIR)证实了微球中Gel和PAA之间的氢键作用.通过透射电镜(TEM)观察了不同反应物重量比的微球外观形貌.最终实现通过控制制备的条件来控制微球的大小和形貌.","authors":[{"authorName":"汪山献松","id":"9608f313-8929-4c29-b38e-9f07534dc101","originalAuthorName":"汪山献松"},{"authorName":"路平","id":"b9da2abb-12d1-42ba-a852-b3169a9f0643","originalAuthorName":"路平"},{"authorName":"张幼维","id":"0893ff8a-d555-4517-a72f-4204c995103c","originalAuthorName":"张幼维"},{"authorName":"吴承训","id":"9f569950-3202-497c-91a6-0f41af26923d","originalAuthorName":"吴承训"}],"doi":"10.3969/j.issn.1673-2812.2007.05.003","fpage":"662","id":"a9279654-735e-4e0a-acaf-2347fdc9122c","issue":"5","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"08711739-ac1f-44a3-9971-cb2106112b5b","keyword":"纳米微球","originalKeyword":"纳米微球"},{"id":"1bb9aa86-1ae3-4a3b-a012-aed1b0554af8","keyword":"明胶","originalKeyword":"明胶"},{"id":"43d6cbd5-4d84-43b7-aa1d-efdbd800c009","keyword":"原位自组装","originalKeyword":"原位自组装"},{"id":"f4159c91-476e-434a-8565-9158cb186b59","keyword":"相互作用","originalKeyword":"相互作用"}],"language":"zh","publisherId":"clkxygc200705003","title":"原位自组装明胶/PAA纳米微球","volume":"25","year":"2007"},{"abstractinfo":"以部分中和的丙烯酸(AA)为单体,在聚乙烯醇(PVA)水溶液中共聚,由聚合液进行溶液纺丝制备高吸水纤维.DSC测试结果表明,PAA-AANa/PVA共混纤维具有两个Tg,均随热处理时间延长而升高.PVA/PAA-AANa纤维受热后发生化学交联的温度区间是130℃~230℃.TG测试表明,PAA-AANa/PVA共混体系内PAA-AANa与PVA侧基官能团间作用使PVA热稳定性增加.溶胀后初生纤维干凝胶的微观形貌显示出大量沿纤维轴向取向的层片,层间大量孔洞说明纤维曾经吸收过大量的水.","authors":[{"authorName":"邓新华","id":"d6ff964f-af9c-40bf-926e-ef89b69a8c00","originalAuthorName":"邓新华"},{"authorName":"孙元","id":"0fe794fb-7257-40c8-8001-91ba412d9adf","originalAuthorName":"孙元"},{"authorName":"吴世臻","id":"2da22e93-84d5-4df5-97de-a0aef9008ee2","originalAuthorName":"吴世臻"}],"doi":"","fpage":"182","id":"30b080e5-dcd1-48d4-8b77-000da854e9c6","issue":"1","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"458cdfa2-0bf6-4364-9676-183a6adc6524","keyword":"高吸水纤维","originalKeyword":"高吸水纤维"},{"id":"744e0226-24a1-4933-8061-599229f6b90a","keyword":"丙烯酸-丙烯酸纳","originalKeyword":"丙烯酸-丙烯酸纳"},{"id":"d69b877d-635e-4e4f-96c9-15827e33fef2","keyword":"聚乙烯醇","originalKeyword":"聚乙烯醇"},{"id":"fd802e31-296c-49ce-832c-f92b6e37ca00","keyword":"热性能","originalKeyword":"热性能"}],"language":"zh","publisherId":"gfzclkxygc200601046","title":"PAA-AANa/PVA高吸水纤维的制备及性能测试","volume":"22","year":"2006"},{"abstractinfo":"为了制备规则有序、大孔间距的多孔阳极氧化铝(PAA)模板,通过在传统的草酸溶液中添加乙醇以及阶梯升压的方法,使草酸溶液的耐压从原来的40 V左右提高至150 V,制备了大孔径(约200 nm)、大孔间距(约350 nm)的有序 PAA模板。详细研究了这种高电压氧化得到的具有较厚阻挡层 PAA 模板的通孔工艺,实验结果表明,在5%(质量分数)磷酸水溶液中30℃下浸泡180 min,可以得到有序的 PAA 通孔模板,首次计算了阻挡层的减薄速率为约1.26 nm/min。","authors":[{"authorName":"胡颂伟","id":"a9ad8e2c-54a9-4863-b4a9-9380ec096125","originalAuthorName":"胡颂伟"},{"authorName":"蔡沈嫄","id":"adcf2e3e-1151-4e7e-8863-5134c6ed88cb","originalAuthorName":"蔡沈嫄"},{"authorName":"张少瑜","id":"543d0cc9-422b-4c35-8fcb-a7eeb252505f","originalAuthorName":"张少瑜"},{"authorName":"王晶","id":"90d4cf9c-5c2c-4d15-873c-0af7c1c8c717","originalAuthorName":"王晶"},{"authorName":"宋晔","id":"c0d4c62b-4569-4fb0-9c9a-0948d17b3e10","originalAuthorName":"宋晔"}],"doi":"10.3969/j.issn.1001-9731.2014.18.005","fpage":"18022","id":"4ecbcf87-8a2b-44e0-b980-f70566b09076","issue":"18","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"6c17103e-429b-484f-8ce6-c0aee74049e4","keyword":"多孔阳极氧化铝","originalKeyword":"多孔阳极氧化铝"},{"id":"eb198868-1d2d-418f-b686-0f0645b9305e","keyword":"阻挡层","originalKeyword":"阻挡层"},{"id":"81be4a7d-734c-4339-b930-9443c919b5ff","keyword":"模板","originalKeyword":"模板"},{"id":"64a1050e-11a5-4118-842d-2e356fe20a25","keyword":"阳极氧化","originalKeyword":"阳极氧化"}],"language":"zh","publisherId":"gncl201418005","title":"草酸溶液中制备大孔间距的通孔PAA模板?","volume":"","year":"2014"},{"abstractinfo":"研究了氯化镁介质中分散剂聚丙烯酸在氧化铝表面的吸附情况.发现盐浓度和pH对吸附曲线均有显著影响.与氯化钠介质中的吸附情况相比,镁离子的存在使PAA的吸附量明显提高,当PAA加入浓度为1570mg/L时,对应吸附曲线的最大值.镁离子与聚丙烯酸形成络合聚合物吸附在氧化铝表面.","authors":[{"authorName":"孙静","id":"5a5f3120-f61a-4549-997e-d6021bbdf1bf","originalAuthorName":"孙静"},{"authorName":"高濂","id":"0604596a-fdd2-4775-9797-5e96057c4516","originalAuthorName":"高濂"}],"doi":"10.3321/j.issn:1000-324X.2002.01.015","fpage":"86","id":"1db8e017-625a-46d4-afe4-0b9f6a7a1e57","issue":"1","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"bc51e5d2-a9f4-4368-b1bf-9cd572b9696b","keyword":"MgCl2介质","originalKeyword":"MgCl2介质"},{"id":"936974ba-b2b7-4828-8d78-df0a95984f6f","keyword":"PAA","originalKeyword":"PAA"},{"id":"5fe3aa3d-7db1-47cb-9889-a731a547e251","keyword":"Al2Oa粉体","originalKeyword":"Al2Oa粉体"},{"id":"c2afc8b4-507d-445b-8ce8-ae7692c60f6c","keyword":"吸附作用","originalKeyword":"吸附作用"}],"language":"zh","publisherId":"wjclxb200201015","title":"氯化镁介质中PAA在A12O3表面吸附作用的研究","volume":"17","year":"2002"}],"totalpage":95,"totalrecord":947}