{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"对BSTMUF601合金在不同温度和应力条件下进行了拉伸蠕变实验,获得了该合金的高温蠕变的变形规律,基于此提出了一种新的修正θ映射法蠕变本构模型,该模型考虑了蠕变3阶段的蠕变特点.模型预测结果与实验结果吻合较好,平均相对误差为1.86%,相对于没有考虑第2阶段的θ映射法模型和没有考虑第1阶段的修正θ映射法模型相对误差分别减少0.10%和6.02%,表明该模型具有较强的适用性,且不降低预测精度.对蠕变和蠕变断裂试样的位错组态和空洞演化进行了显微分析,结果表明,稳态蠕变阶段蠕变应力指数都接近5,合金主要通过位错攀移越过γ'相的方式变形,并未观察到层错和微孪晶存在于y'相或基体中,蠕变变形机制主要是位错攀移.空洞在晶界上形核,长大连接形成裂纹,在应力集中作用下,裂纹沿晶界扩展,最终导致断裂,蠕变断裂机制主要是晶界断裂.","authors":[{"authorName":"朝阳","id":"6a1fd234-e412-464d-bd74-fe407de24b14","originalAuthorName":"孙朝阳"},{"authorName":"石兵","id":"e48187a7-52d2-4dab-82db-6be5ec019380","originalAuthorName":"石兵"},{"authorName":"武传标","id":"5bdea62b-26af-442d-8525-ff589625d77a","originalAuthorName":"武传标"},{"authorName":"叶乃威","id":"3424d958-f6e0-45e8-a069-3931d693aa7d","originalAuthorName":"叶乃威"},{"authorName":"马天军","id":"5794ee3e-2a01-4fe8-b0f9-a45a3cce0aae","originalAuthorName":"马天军"},{"authorName":"徐文亮","id":"5862dcf6-6f5f-4075-a82c-3f826a7d4f5c","originalAuthorName":"徐文亮"},{"authorName":"杨竞","id":"549ff4fd-a21c-46fd-aab5-092a64efa584","originalAuthorName":"杨竞"}],"doi":"10.11900/0412.1961.2014.00293","fpage":"349","id":"4d8b2312-1c77-44d0-a4bf-acddfaac1ac9","issue":"3","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"2b3c2f9c-1c1f-41e3-a6ae-179ce47548fb","keyword":"BSTMUF601合金","originalKeyword":"BSTMUF601合金"},{"id":"0f82d7e1-845c-482f-83a2-afb9d66f1309","keyword":"蠕变变形","originalKeyword":"蠕变变形"},{"id":"a25bedf3-56a3-4831-880b-3a4e54f2065e","keyword":"稳态蠕变速率","originalKeyword":"稳态蠕变速率"},{"id":"81cbad7c-64a0-4c51-92ff-6445c0e3a3a0","keyword":"蠕变断裂","originalKeyword":"蠕变断裂"}],"language":"zh","publisherId":"jsxb201503011","title":"BSTMUF601合金的高温蠕变变形机制","volume":"51","year":"2015"},{"abstractinfo":"马虎沟测区位于灵北断裂带下盘,区内主干断裂为前家—洼家断裂,发育似斑状郭家岭型花岗闪长岩和玲珑型片麻状黑云母花岗岩. 本次地表构造地球化学测量范围约15 km2 ,采集构造地球化学样品共858件,测试元素包括Au、Ni、Pb、Co、Mo、Sn、Zn、Ti、Cr、As、Sb、Hg、Ag、Cu、Ba、Bi、B、Mn、V等19种. Au元素异常沿前家—洼家断裂带及次级断裂分布特征明显. 分形分维统计表明,Au具有多阶段成矿的特征. 结合多元统计分析,厘定本测区构造地球化学异常找矿标志为Au-Pb-Bi元素组合异常及因子得分Y(i,2)和Y(i,3)异常. 结合地质分析,圈定找矿靶区5处.","authors":[{"authorName":"祝涛","id":"d87cfdbb-d220-4cb9-8426-f320167f9456","originalAuthorName":"祝涛"},{"authorName":"杨斌","id":"1d417931-fdd7-42e2-9013-b63c775244b0","originalAuthorName":"杨斌"}],"doi":"10.11792/hj20160103","fpage":"9","id":"a5cda7a4-a416-4d7a-a1fe-6ba6019f42a3","issue":"1","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"d52aaa44-4bef-429b-abb6-5fb51c9e7876","keyword":"找矿预测","originalKeyword":"找矿预测"},{"id":"ba34116e-33b4-4e40-b1a4-18c7f3563a5e","keyword":"构造地球化学","originalKeyword":"构造地球化学"},{"id":"bc66191e-c1c4-431b-beee-3c43a947083a","keyword":"多元统计分析","originalKeyword":"多元统计分析"},{"id":"bd626c5c-05ff-4c78-a90c-4eb7ed36e1c4","keyword":"前家—洼家断裂带","originalKeyword":"前孙家—洼孙家断裂带"}],"language":"zh","publisherId":"huangj201601003","title":"胶西北前家—洼家断裂带构造地球化学找矿预测","volume":"37","year":"2016"},{"abstractinfo":"磁流变弹性体的制备过程中,其内部导磁颗粒沿外加磁场方向聚集成链状。颗粒链能作为导电通道使得磁流变弹性体导电。根据磁流变弹性体的颗粒结构特点,在其内部选取导电单元作为导电模型。分析了导电单元的导电特性,得到磁流变弹性体的电导率表达式。制备了磁流变弹性体样品并测试其导电性能,验证了理论表达式的正确性。结果表明,流过磁流变弹性体的电流由传导电流和隧道电流组成,其电导率是与电压相关的非线性函数。","authors":[{"authorName":"滕桂荣","id":"9474d335-37a0-4cc4-8ff6-29d687d697ab","originalAuthorName":"滕桂荣"},{"authorName":"朱绪力","id":"d91f4d42-c720-4e41-a37a-507016bb6ffe","originalAuthorName":"朱绪力"},{"authorName":"朝阳","id":"4e4df931-6353-4bbf-9250-b9f29957c922","originalAuthorName":"孙朝阳"},{"authorName":"刘济仁","id":"d6ed9fcd-be4f-465c-8a51-ccdc1ad0968a","originalAuthorName":"刘济仁"},{"authorName":"吕楠","id":"7c0afca7-caa4-43d5-b3fd-f436b4a94f49","originalAuthorName":"吕楠"}],"doi":"10.3969/j.issn.1001-9731.2015.22.008","fpage":"22045","id":"19025940-a990-43cc-92a4-57606848126d","issue":"22","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"d44d1e41-4def-4508-b615-ff44a1078a29","keyword":"磁流变弹性体","originalKeyword":"磁流变弹性体"},{"id":"c6fb5c42-6777-4453-a24f-541fcc3c12dd","keyword":"电导率","originalKeyword":"电导率"},{"id":"5826a0a3-ad1a-468d-89c0-2c7e2bcaedd5","keyword":"传导电流","originalKeyword":"传导电流"},{"id":"2eb9cb32-f1f2-4ab2-b264-3f40ce014bf4","keyword":"隧道电流","originalKeyword":"隧道电流"}],"language":"zh","publisherId":"gncl201522008","title":"磁流变弹性体的导电机理分析?","volume":"","year":"2015"},{"abstractinfo":"建立了不锈钢拉伸弯曲矫直过程的有限元仿真模型,该模型针对不锈钢拉矫机辊组配置和旋转压下的特点,采用了窄条三维壳单元对带钢进行特征建模.为提高计算效率,带钢网格进行了局部细化.对304不锈钢典型规格带钢拉矫过程进行模拟,伸长率计算值与实测值吻合较好.对带钢拉矫过程特征位置点经过各辊组的应力应变分析表明:带钢仲长率主要由1号弯曲辊组提供,而2号、3号矫直辊组对带钢伸长率的贡献不明显.该研究得到的不锈钢带拉矫过程变形行为可为拉矫工艺参数确定和优化提供理论基础.","authors":[{"authorName":"朝阳","id":"fb15d4a3-feb9-4136-8c16-59e4f1a6b339","originalAuthorName":"孙朝阳"},{"authorName":"张栋","id":"774b303b-066b-4222-9bd9-72f17918561f","originalAuthorName":"张栋"},{"authorName":"张清东","id":"8d1ff62f-c109-4d4d-858a-1f6462b70bcc","originalAuthorName":"张清东"},{"authorName":"李实","id":"05c43b94-fdf2-4a2c-8e77-db55dc20d841","originalAuthorName":"李实"},{"authorName":"蔡永跃","id":"1f85af15-44c2-4382-b9b3-fac9d1244705","originalAuthorName":"蔡永跃"}],"doi":"","fpage":"51","id":"2b232c3f-a635-4493-9268-07ac75544eb9","issue":"8","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"1302a21a-b233-483e-8c64-0b68eebdbef4","keyword":"不锈钢","originalKeyword":"不锈钢"},{"id":"a504770e-c750-4800-a137-6d5dda1822d9","keyword":"拉伸弯曲矫直","originalKeyword":"拉伸弯曲矫直"},{"id":"dfaf1587-fc00-47ea-8397-d1fc03652787","keyword":"有限元仿真","originalKeyword":"有限元仿真"},{"id":"3f7122f5-08ca-46b3-b888-541e6b6ea352","keyword":"伸长率","originalKeyword":"伸长率"}],"language":"zh","publisherId":"gt201008012","title":"不锈钢带拉矫过程变形行为的数值模拟研究","volume":"45","year":"2010"},{"abstractinfo":"为了更清楚地认识铁基合金经受非热弹性马氏体相变的本征特性,在细观尺度对非热弹性马氏体相变进行了研究.基于马氏体相变晶体学和内变量本构理论建立了非热弹性马氏体相变的细观本构模型.该模型采用微区相变应变、奥氏体及马氏体的塑性应变表征宏观的非弹性响应,把奥氏体和马氏体变体的等效塑性应变率和体积分数变化率作为内变量描述微观结构变化.模型采用J_2流动理论描述微区塑性流动,与采用晶体塑性的描述方法相比模型更简单,且更适用于工程计算.单晶奥氏体单变体简单剪切的模拟结果表明:随着应变的增加,先发生奥氏体塑性变形,进而发生相变,马氏体体积分数与应变呈线性关系;温度较低时易发生马氏体相变并使得材料的强度提高.","authors":[{"authorName":"朝阳","id":"a6d2d637-e55f-4dbc-95a2-77523caddd53","originalAuthorName":"孙朝阳"},{"authorName":"方刚","id":"d06ced8e-cd7a-47c7-83e9-301d02c60f1c","originalAuthorName":"方刚"},{"authorName":"雷丽萍","id":"769739fa-d051-4dde-99b2-0ca701e1a789","originalAuthorName":"雷丽萍"},{"authorName":"曾攀","id":"931b9aaf-d671-4073-84a7-27df253782e9","originalAuthorName":"曾攀"}],"doi":"","fpage":"445","id":"3ecfd8d0-376b-49cd-8479-bb1c0bc93dc2","issue":"4","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"a4c599d0-2587-4ff5-b7b4-e1e9bb781401","keyword":"非热弹性马氏体相变","originalKeyword":"非热弹性马氏体相变"},{"id":"12e27039-83f3-4f58-9b04-2c7ca02d8629","keyword":"细观本构模型","originalKeyword":"细观本构模型"},{"id":"d151e2e9-606e-43f6-8e51-185556a3e3fa","keyword":"J_2 流动理论","originalKeyword":"J_2 流动理论"}],"language":"zh","publisherId":"clkxygy200904001","title":"非热弹性马氏体相变的细观本构模型","volume":"17","year":"2009"},{"abstractinfo":"通过考虑温度和相变对等效物性参数的影响,建立了包含附加应力和应变的弹塑性增量本构关系,并采用该本构关系和ABAQUS软件构建了淬火过程的数值模拟平台.该本构模型引入的附加应力和应变分别由温度变化和相演化引起的.具有明确的物理意义.通过对26Cr2Ni4MoV钢的圆筒零件水淬过程的模拟表明,该模型能够正确地分析残余应力沿半径方向的分布规律.并且在截面中间部位残余应力值和靠近外表面的应力峰值与实测值更加接近,说明全面考虑温度和相变影响的弹塑性增量本构关系可改善模拟计算的精度.","authors":[{"authorName":"朝阳","id":"8e50a369-2d2a-4560-8a53-74ee2c317582","originalAuthorName":"孙朝阳"},{"authorName":"方刚","id":"efc2eb34-d919-44da-b57f-259435b7d9fe","originalAuthorName":"方刚"},{"authorName":"雷丽萍","id":"14d4125f-34b7-4e46-a089-36819b35f87f","originalAuthorName":"雷丽萍"},{"authorName":"曾攀","id":"6d939364-cf16-4aee-8e14-16e246c9cde2","originalAuthorName":"曾攀"}],"doi":"","fpage":"162","id":"63ca4f87-cf2d-4d63-9730-3b11967c50b1","issue":"1","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"1c49d5e6-c3e6-4888-ac7f-ddb27ee68717","keyword":"淬火","originalKeyword":"淬火"},{"id":"01a74ef2-8c2b-40e0-880b-4c1044e74fa6","keyword":"弹塑性本构","originalKeyword":"弹塑性本构"},{"id":"cbcd4acf-a6b4-473b-9dcc-911fd57b52b2","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"jsrclxb200801037","title":"温度和相变影响的弹塑性本构关系及应用","volume":"29","year":"2008"},{"abstractinfo":"温升和挤压力是影响钢管挤压过程的重要指标,利用热模拟实验获得了IN690合金的热加工本构关系,建立了IN690合金钢管热挤压过程的有限元模型.采用正交实验设计的仿真实验系统分析了坯料温度(T b=1000~1200℃)、挤压速度(v=20~200 mm/s)和模具预热温度(T d=300~500℃)对管材成形过程中温升和挤压力的影响.研究表明:坯料温度对温升与挤压力影响最为显著,挤压速度次之,而模具预热温度影响最小.最佳工艺参数为:T b=1200℃,v=20 mm/s,T d=300℃;建立了最大挤压力和温升关于工艺参数的预测模型,误差小于8%.","authors":[{"authorName":"朝阳","id":"bf73981f-15d3-45dd-bf0e-7f4cdd4ed7a7","originalAuthorName":"孙朝阳"},{"authorName":"刘斌","id":"4007bc16-d804-48dd-b0fa-f462e35a32fa","originalAuthorName":"刘斌"},{"authorName":"李瑞","id":"a285dd02-987b-4509-9a1d-0561271e5aba","originalAuthorName":"李瑞"},{"authorName":"张清东","id":"bcc2d093-0b21-48fd-8839-97ab5e1315c8","originalAuthorName":"张清东"}],"doi":"","fpage":"52","id":"6722297f-8cef-45c9-8507-5b31a8e7c2a2","issue":"4","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"a5680176-cbb2-4c3b-b181-ed78d37fd303","keyword":"高温合金","originalKeyword":"高温合金"},{"id":"e3eddcd5-3e7c-4599-8a2d-722f75b9e7b3","keyword":"管材热挤压","originalKeyword":"管材热挤压"},{"id":"6d5dd9ae-6662-4b22-8c64-a3280e41323f","keyword":"温升","originalKeyword":"温升"},{"id":"5c6aac00-fa73-4f1d-a34b-354360ab691f","keyword":"挤压力","originalKeyword":"挤压力"}],"language":"zh","publisherId":"clkxygy201104012","title":"IN690合金管热挤压温升与挤压力的研究","volume":"19","year":"2011"},{"abstractinfo":"为建立准确的低碳马氏体钢淬火过程数值计算模型,采用Gleeble3500热模拟实验机对单轴应力作用下Q460D钢马氏体相变的相变塑性进行了研究.通过分析无应力循环和外加应力的实验过程,在试样径向膨胀曲线中分离出了相变塑性应变.实验结果表明,相变塑性应变随外加应力的增加而增大,相变塑性应变与施加应力大致呈线性关系.采用Greenwood-Johnson模型得到了Q460D钢的相变塑性系数.利用所得相变塑性系数计算出膨胀曲线,并与实测膨胀曲线进行比较,计算值与实验值吻合较好,文章结果可用于Q460D钢淬火过程的数值模拟.","authors":[{"authorName":"曹强","id":"61516fd8-5c38-4af7-a310-fcaab0bec6c3","originalAuthorName":"曹强"},{"authorName":"张清东","id":"092274da-03cc-4628-b158-be81da9b743a","originalAuthorName":"张清东"},{"authorName":"张晓峰","id":"fdbe0f32-ce0b-4090-b5d9-52354ff17edb","originalAuthorName":"张晓峰"},{"authorName":"朝阳","id":"5a86f225-3159-4706-84aa-444c79ab672e","originalAuthorName":"孙朝阳"}],"doi":"","fpage":"104","id":"c57a63a8-5ee4-4f1e-99fc-e5c159405411","issue":"6","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"97d6cb76-702f-407f-9e69-02f6c7c8704a","keyword":"Q460D钢","originalKeyword":"Q460D钢"},{"id":"aee25265-26f7-4465-a037-74f103c085c6","keyword":"马氏体相变","originalKeyword":"马氏体相变"},{"id":"dc9c8ae4-7daf-416a-9544-8ef3ecc13f6c","keyword":"相变塑性","originalKeyword":"相变塑性"},{"id":"b5798119-1027-4278-9306-0980f62c516f","keyword":"相变","originalKeyword":"相变"},{"id":"06e677ab-07a8-490b-9248-e65a115d4dae","keyword":"变形","originalKeyword":"变形"}],"language":"zh","publisherId":"clkxygy201306018","title":"Q460D钢马氏体相变塑性的实验研究","volume":"21","year":"2013"},{"abstractinfo":"

采用等温压缩实验获得了变形温度为200~400 ℃, 应变速率为0.001~1 s-1的AZ80镁合金的流变应力曲线, 考虑动态硬化及软化特性描述了AZ80镁合金热变形过程动态再结晶主导的软化行为. 提出基于动态材料模型的应变速率敏感性指数表征动态再结晶引起的能量耗散, 该指数通过引入动态再结晶体积分数描述微观组织演化的耗散功. 考虑变形温度和应变速率构建了不同应变的应变速率敏感性指数图, 实现应变速率敏感性指数对动态再结晶软化行为的量化表征. 在此基础上, 研究了变形温度、应变速率对动态再结晶临界条件及演化过程的影响, 重点分析了不同应变的应变速率敏感性指数图特征. 结果表明: 随着变形温度的升高和应变速率的降低, 动态再结晶软化临界应变减小, 动态再结晶体积分数增加; 应变速率敏感性指数与动态再结晶体积分数正相关, 指数大于0.21的区域对应着高动态再结晶体积分数, 且均位于低应变速率下, 并通过动态再结晶软化的微观组织进行了验证.

","authors":[{"authorName":"蔡贇","id":"755e7f95-3cd0-4d09-bd39-99e9ec868bf0","originalAuthorName":"蔡贇"},{"authorName":"朝阳","id":"24caf8dc-4527-4955-ace8-6e8b6ac877d5","originalAuthorName":"孙朝阳"},{"authorName":"万李","id":"f828632f-02cb-4853-a39b-0045dfc4257c","originalAuthorName":"万李"},{"authorName":"阳代军","id":"cd886340-cec2-4ef7-aafb-103b271041e2","originalAuthorName":"阳代军"},{"authorName":"周庆军","id":"cb9229bd-01ca-4010-94a2-83c0585b1735","originalAuthorName":"周庆军"},{"authorName":"苏泽兴","id":"7b7831ba-1ed5-4fee-b286-33ad7a0abde5","originalAuthorName":"苏泽兴"}],"categoryName":"Orginal Article","doi":"10.11900/0412.1961.2016.00051","fpage":"1123","id":"11d3f7f4-3312-47fc-8a7e-6663635e8131","issue":"9","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"f08873c3-638c-4d68-96fc-4f0462bcca26","keyword":"镁合金","originalKeyword":"镁合金"},{"id":"f12020e2-7c60-4a97-af30-e7eeee97e6b0","keyword":"动态再结晶","originalKeyword":"动态再结晶"},{"id":"8225c61c-98f6-4937-92b0-366b2c286991","keyword":"变形行为","originalKeyword":"变形行为"},{"id":"f12baed4-6e15-4486-bd76-321bb01533d1","keyword":"应变速率敏感性","originalKeyword":"应变速率敏感性"}],"language":"zh","publisherId":"C20160051","title":"AZ80镁合金动态再结晶软化行为研究*","volume":"52","year":"2016"},{"abstractinfo":"通过高温循环氧化实验,研究了3种镍基合金在1095和1150℃的高温抗氧化行为,并采用扫描电镜(SEM)和能谱分析(EDS)研究了氧化膜表面形貌、氧化膜厚度及成分.结果表明:BSTMUF601合金的抗氧化性能优于Inconel601合金和Incoloy800H合金,Incoloy800H合金抗氧化性能最差.1095℃下合金的氧化动力学曲线呈抛物线规律,1150℃下Incoloy800H合金抗氧化性显著降低,试样氧化极为严重,温度低于1150℃时合金均体现出良好的抗高温氧化能力.BSTMUF601和Inconel601合金氧化后表面生成一层致密的氧化膜,经分析主要是Cr和Al的氧化物,且氧化膜外层以Cr的氧化物为主,氧化膜厚度接近50 μm,Incoloy800H合金表面氧化层中以Fe的不同结构氧化产物为主.","authors":[{"authorName":"朝阳","id":"6fc5c777-bf68-425b-ae9e-fc7b1ac514a2","originalAuthorName":"孙朝阳"},{"authorName":"陈桂才","id":"34223b91-6178-4a6e-8518-74fe6f6d2b42","originalAuthorName":"陈桂才"},{"authorName":"武传标","id":"fc366b8c-dbda-42b8-9ad0-0a7b02fd5351","originalAuthorName":"武传标"},{"authorName":"徐文亮","id":"60499cf3-e888-404e-b63b-82c4cfa8bbba","originalAuthorName":"徐文亮"},{"authorName":"马天军","id":"54e27fa4-7d5a-4490-86ff-3e91322a92a4","originalAuthorName":"马天军"},{"authorName":"杨竞","id":"2fdad1e1-8b99-4c14-ba51-e7099f5458d0","originalAuthorName":"杨竞"}],"doi":"10.11903/1002.6495.2014.132","fpage":"345","id":"abeb3dcb-626f-429e-aaba-00630975113c","issue":"4","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"3b578125-00f7-4fbb-918f-49ce302c2089","keyword":"镍基合金","originalKeyword":"镍基合金"},{"id":"06ccc482-2230-4cdc-9bd9-d62cd715299d","keyword":"高温氧化","originalKeyword":"高温氧化"},{"id":"291b28f3-26ac-4701-a2de-b92d4d257b0f","keyword":"BSTMUF601合金","originalKeyword":"BSTMUF601合金"},{"id":"1c0685c2-d93e-4634-8299-3c05b73ce911","keyword":"氧化动力学","originalKeyword":"氧化动力学"}],"language":"zh","publisherId":"fskxyfhjs201404010","title":"典型耐热镍基合金抗高温氧化行为研究","volume":"26","year":"2014"}],"totalpage":5,"totalrecord":42}