{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"铁磁流体中存在一个不平衡旋度Ω≠1/2rotv,由此引起悬浮在顺磁性载液中的磁偶极矩为m的磁粒子的旋转摩擦,其摩擦粘度系数为ηr.原先以磁畴取向的磁粒子,在外磁场作用下,改变其方向需一个弛豫时间τ.在高速(≥7m/s)下,磁流体内摩擦功耗热致使其粘度和粒子磁性能下降.以牛顿内摩擦模型由朗之万和纳维-斯托克斯方程导出磁粒子的旋转摩擦功耗公式.实验验证公式符合实验工况.","authors":[{"authorName":"杨逢瑜","id":"4bf4ae0c-8646-40f4-bafb-0bd2d34b84a7","originalAuthorName":"杨逢瑜"},{"authorName":"齐学义","id":"555ab38b-6003-4211-b280-7be229039855","originalAuthorName":"齐学义"},{"authorName":"","id":"6da4061a-41ba-4fcc-a133-7427a868933d","originalAuthorName":"郝燕文"},{"authorName":"李桂花","id":"4e7588cd-f8e7-4f9e-9d06-c5f6f3077757","originalAuthorName":"李桂花"}],"doi":"10.3969/j.issn.1005-8192.2002.06.009","fpage":"26","id":"34fdfacb-5f28-466b-b59f-830295e409ec","issue":"6","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"c1e96682-fa45-424f-96b5-99293612833a","keyword":"磁流体","originalKeyword":"磁流体"},{"id":"f72b8542-96ac-446a-a779-276b4eff7b83","keyword":"密封","originalKeyword":"密封"},{"id":"374ea7a2-866c-45c0-bd65-521d6b21f5df","keyword":"摩擦功耗","originalKeyword":"摩擦功耗"}],"language":"zh","publisherId":"jsgncl200206009","title":"磁流体动密封流体摩擦功耗的确定","volume":"9","year":"2002"},{"abstractinfo":"采空区是引起地表塌陷、恶化矿山开采条件的严重安全隐患,对不明采空区的精细探测技术、治理技术及安全监测装备与预警技术的开发研究,是复杂条件下矿山安全高效开采迫切需要解决的重大课题。以西庄矿为工程背景,介绍了采空区地表GPS监测系统及沉降监测方案;通过在地表合理设置若干个监测点,利用所安装的监测系统来监视裂缝区域和地表沉降区域的动态演变过程,并将监测信息发送到监控室;通过布点监测,及时预测地压来临时间,为预警决策和矿山及时撤出处于危险区人员提供依据,实现矿山安全生产,具有一定的推广意义。","authors":[{"authorName":"董华兴","id":"fd20910e-c537-4c5f-9e59-a76241291b1d","originalAuthorName":"董华兴"},{"authorName":"李淑霞","id":"da23aa00-033f-4988-a738-0a35fa8d0a90","originalAuthorName":"李淑霞"},{"authorName":"孙帅","id":"1590e872-a796-4912-8c82-c863ac73fe84","originalAuthorName":"孙帅"}],"doi":"10.11792/hj20130711","fpage":"39","id":"df9f62ba-4050-485b-8ed3-7f67ab74a239","issue":"7","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"8ffd5a76-3dd6-4e6d-80b7-3c742050ff51","keyword":"采空区","originalKeyword":"采空区"},{"id":"06f9df65-8fc2-4bbd-8e29-81b642364f08","keyword":"地表塌陷","originalKeyword":"地表塌陷"},{"id":"ea01b2b1-931e-4dbd-a2b9-ee5f0b31ed40","keyword":"GPS监测","originalKeyword":"GPS监测"},{"id":"76f0523d-d350-44de-8fc1-a6927974073e","keyword":"观测点","originalKeyword":"观测点"},{"id":"4119d399-551b-49bf-8c70-39e6ff0fa946","keyword":"基准点","originalKeyword":"基准点"},{"id":"79dcdd63-b629-4598-b7ab-fa2f57da83fd","keyword":"预警","originalKeyword":"预警"}],"language":"zh","publisherId":"huangj201307014","title":"GPS 监测系统在西庄矿采空区治理中的应用","volume":"","year":"2013"},{"abstractinfo":"采用XRD、XPS和EPMA对中原油田23-1、23-8气井油管腐蚀产物和管材进行分析,并试验了碳钢在CO_2介质中的腐蚀。研究结果表明,天然气中的CO_2及凝析水是气井腐蚀的主要原因。管材的非金属夹杂物(MnS、Al_2O_3)含量超标,是加速油管在CO_2环境中局部腐蚀穿孔破坏的另一原因。还探索了应用缓蚀剂防止气井CO_2腐蚀的可能性。","authors":[{"authorName":"郑家燊","id":"4aa259a3-9890-4b94-9b92-98f14b4e4f42","originalAuthorName":"郑家燊"},{"authorName":"傅朝阳","id":"a1cacedc-6258-4398-b16d-88cd84d16bb2","originalAuthorName":"傅朝阳"},{"authorName":"刘小武","id":"bf9d6195-ac31-4120-af98-9fe37c032278","originalAuthorName":"刘小武"},{"authorName":"彭芳明","id":"b12594db-16cd-4fed-acee-6a3b80c2e3e0","originalAuthorName":"彭芳明"},{"authorName":"黄先球","id":"81f57758-cf1b-4278-85f5-8487745c85f5","originalAuthorName":"黄先球"},{"authorName":"赵景茂","id":"2585fd88-4683-4422-a42d-a7e16622f802","originalAuthorName":"赵景茂"},{"authorName":"吴灿奇","id":"f5df895d-4271-4238-9ffd-b90f59bcfea3","originalAuthorName":"吴灿奇"},{"authorName":"徐卫东","id":"d818fdc7-f940-4272-876f-da920464a5be","originalAuthorName":"徐卫东"},{"authorName":"王选奎","id":"0e7fcc50-e2ce-4b16-b99e-966d1599adb8","originalAuthorName":"王选奎"}],"categoryName":"|","doi":"","fpage":"227","id":"0d85a2b4-88c6-4d26-9da8-44ae165c2bb0","issue":"3","journal":{"abbrevTitle":"ZGFSYFHXB","coverImgSrc":"journal/img/cover/中国腐蚀封面19-3期-01.jpg","id":"81","issnPpub":"1005-4537","publisherId":"ZGFSYFHXB","title":"中国腐蚀与防护学报"},"keywords":[{"id":"e9abd684-3d59-4d32-afed-0dc9a6ebb526","keyword":"气井","originalKeyword":"气井"},{"id":"419b9942-a4fd-4ee8-a6d7-8dc4eefbc226","keyword":" Oil pipe corrosion","originalKeyword":" Oil pipe corrosion"},{"id":"feeaf218-889a-414d-b05a-0280637a071b","keyword":" Failure analysis","originalKeyword":" Failure analysis"},{"id":"fa46cf1b-a087-49db-976c-f2d91ed2912a","keyword":" Inhibitor","originalKeyword":" Inhibitor"}],"language":"zh","publisherId":"1005-4537_1998_3_5","title":"中原油田23气田气井腐蚀原因分析","volume":"18","year":"1998"},{"abstractinfo":"以拉法辛为原料,分别以新的脱甲基试剂半胱氨酸钠盐和青霉胺钠盐制备了O-去甲基拉法辛,收率为86%和82%.一锅中分别完成了半胱氨酸钠盐、青霉胺钠盐的制备与拉法辛脱甲基反应,简化了操作步骤.最优反应条件为溶剂N-甲基吡咯烷酮,反应温度175℃,产物析晶pH值9.5.","authors":[{"authorName":"史兰香","id":"7597e205-02a8-4085-8343-0c2ab51f36d3","originalAuthorName":"史兰香"},{"authorName":"张宝华","id":"7ba9bf25-7bfc-4318-8efb-de8c0b997697","originalAuthorName":"张宝华"}],"doi":"10.3724/SP.J.1095.2013.20351","fpage":"608","id":"1c34983e-fdfa-4f09-8d73-f19f35b652d1","issue":"5","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"e00801ae-0af6-4f60-8558-f9affd1bf34b","keyword":"O-去甲基拉法辛","originalKeyword":"O-去甲基文拉法辛"},{"id":"8ca7db3f-40ec-418b-8cdf-abfa3eb3f31f","keyword":"拉法辛","originalKeyword":"文拉法辛"},{"id":"68c5308b-5920-423a-8b00-745e3794cf01","keyword":"脱甲基化","originalKeyword":"脱甲基化"},{"id":"9a3870aa-9adf-42e1-ba5c-d1ec47baacb2","keyword":"半胱氨酸钠盐","originalKeyword":"半胱氨酸钠盐"},{"id":"cc5917c0-e45e-49e1-ba0f-753dc1f71b26","keyword":"青霉胺钠盐","originalKeyword":"青霉胺钠盐"}],"language":"zh","publisherId":"yyhx201305020","title":"O-去甲基拉法辛合成的新方法","volume":"30","year":"2013"},{"abstractinfo":"对丽哈贝壳的微结构进行了扫描电镜(SEM)观察,观察显示它是由无机霰石层和有机胶原蛋白组成的一种生物陶瓷复合材料,其中无机霰石层平行于贝壳表面整齐排列.观察也显示这些霰石层是由长而薄的霰石片所组成,不同霰石层中的霰石片具有不同的方向,构成螺旋等铺层形式.更仔细的观察显示每一霰石片又是由长而细的霰石纤维所组成,最细的霰石纤维具有纳米的尺度.根据在贝壳中观察到的螺旋结构,进行了螺旋结构和平行结构最大拔出力的比较实验研究,结果显示螺旋结构的最大拔出力大于平行结构的最大拔出力,它使贝壳具有高的强韧性.研究结果对高性能仿生陶瓷复合材料设计提供了有益指导.","authors":[{"authorName":"陈斌","id":"91984828-0e77-4a93-8cfd-2a46e2d25fed","originalAuthorName":"陈斌"},{"authorName":"彭向和","id":"d5ef20d1-e4e5-4a98-ba6b-92196ea2e073","originalAuthorName":"彭向和"},{"authorName":"孙士涛","id":"75180f74-ebf9-43d4-8789-47a26820e62b","originalAuthorName":"孙士涛"},{"authorName":"季金苟","id":"40f27576-f5ed-4e6e-b90d-d14547d07392","originalAuthorName":"季金苟"},{"authorName":"陈松","id":"964db22e-7bbb-4c54-80ae-5085d2652f09","originalAuthorName":"陈松"}],"doi":"","fpage":"60","id":"3b75f394-59d0-43b2-a932-20048ca15d0a","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"27c2d5d0-a910-4ad5-877a-f290d9c33e02","keyword":"丽哈贝壳","originalKeyword":"丽文哈贝壳"},{"id":"9b386643-5818-48f6-b972-95cb3df8690a","keyword":"生物陶瓷复合材料","originalKeyword":"生物陶瓷复合材料"},{"id":"1282b5cd-aa58-48ae-816f-8792bfb44248","keyword":"螺旋微结构","originalKeyword":"螺旋微结构"},{"id":"aadcdba1-cd86-4a6e-839e-1b9c5dec2ce3","keyword":"最大拔出力","originalKeyword":"最大拔出力"}],"language":"zh","publisherId":"xyjsclygc2008z1015","title":"丽哈贝壳螺旋微结构研究","volume":"37","year":"2008"},{"abstractinfo":"本文通过对不同收缩比和收缩段形线结构下的丘里管内气固两相流的数值模拟,给出了丘里燃烧器浓淡分离效果和阻力特性与丘里管结构的关系.结果表明,丘里燃烧器的阻力损失主要发生在收缩段,并且随着收缩比的增大,燃烧器的浓淡分离效果将变差,阻力损失减小;当收缩段采用圆弧形形线结构时,可使丘里燃烧器单位压降的浓淡比增加,且在弯曲弧度相同的情况下,“内凹”弧形与“外凸”弧形燃烧器相比,其单位压降浓淡比更大;收缩段形线弯曲弧度增大,单位压降浓淡比随之增大.","authors":[{"authorName":"沈思苇","id":"5a999190-3ffb-4d80-b460-197cedc06af0","originalAuthorName":"沈思苇"},{"authorName":"杨茉","id":"97121967-3835-4991-ab13-304ee7067213","originalAuthorName":"杨茉"},{"authorName":"蒋华","id":"8488f542-67c3-46c1-98cf-56cebb209ac6","originalAuthorName":"蒋燕华"},{"authorName":"王治云","id":"08b55b85-7a1b-45d8-9657-16a373b016e4","originalAuthorName":"王治云"}],"doi":"","fpage":"347","id":"747fc399-8dda-4084-b7bd-cebe62212e4a","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"c7de31ac-c443-4b67-99c0-974d64964d69","keyword":"丘里管","originalKeyword":"文丘里管"},{"id":"69c79a58-0279-4848-b9b6-4ac959176221","keyword":"浓淡燃烧器","originalKeyword":"浓淡燃烧器"},{"id":"04996fc7-bd5d-4c2d-bd4f-38e2cde015b7","keyword":"气固两相流","originalKeyword":"气固两相流"},{"id":"2de6fa00-619b-41d8-83b3-28e197cbec04","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"gcrwlxb201502026","title":"丘里燃烧器结构对浓淡分离影响的数值模拟","volume":"36","year":"2015"},{"abstractinfo":"根据中原油田一污水站水质分析和腐蚀监测结果,应用灰关联分析方法对中原油田一污水站腐蚀状况进行了分析,灰关联度的计算结果表明:影响中原油田一污来水腐蚀性的主要因素是∑Fe含量、pH值、Fe3+浓度、SRB(硫酸盐还原菌)含量、HCO3-浓度和TGB(腐生菌)含量;影响中原油田一污处理后水腐蚀性的主要因素是矿化度、Ca2+、Mg2+、Cl-、SO42-和Na+浓度.对中原油田一污来水、处理后水的水质与腐蚀速率的进行了比较结果表明:提高来水的pH值、控制污水中SRB及TGB含量、降低污水中∑Fe浓度,对于降低腐蚀速率意义重大;同时也进一步证明了灰关联分析结果符合实际情况.灰关联分析方法为中原油田一污水的腐蚀研究提供了新的思路和方法.\n\n","authors":[{"authorName":"屈撑囤","id":"6846d64c-8a1a-4d59-915b-e7af865bb333","originalAuthorName":"屈撑囤"},{"authorName":"卢会霞","id":"758143eb-e418-44e9-bf68-07527de46beb","originalAuthorName":"卢会霞"},{"authorName":"卜绍峰","id":"d89e6db0-9d7c-4460-a75e-5ff428abe131","originalAuthorName":"卜绍峰"}],"categoryName":"|","doi":"","fpage":"198","id":"2cb3b772-d098-4219-bdb4-ea81d83ae6f2","issue":"3","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"bed557cf-c9ed-4573-a221-71b69483f85e","keyword":"灰关联分析","originalKeyword":"灰关联分析"},{"id":"b67d85fa-418a-4a6f-a335-0377a53435fa","keyword":"null","originalKeyword":"null"},{"id":"1a6e0d19-e9fd-46c2-8a31-8926ec42963e","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"1002-6495_2005_3_17","title":"灰关联分析法研究中原油田一污水的腐蚀因素","volume":"17","year":"2005"},{"abstractinfo":"根据中原油田一污水站水质分析和腐蚀监测结果,应用灰关联分析方法对中原油田一污水站腐蚀状况进行了分析,灰关联度的计算结果表明:影响中原油田一污来水腐蚀性的主要因素是∑Fe含量、pH值、Fe3+浓度、SRB(硫酸盐还原菌)含量、HCO3-浓度和TGB(腐生菌)含量;影响中原油田一污处理后水腐蚀性的主要因素是矿化度、Ca2+、Mg2+、Cl-、SO42-和Na+浓度.对中原油田一污来水、处理后水的水质与腐蚀速率的进行了比较结果表明:提高来水的pH值、控制污水中SRB及TGB含量、降低污水中∑Fe浓度,对于降低腐蚀速率意义重大;同时也进一步证明了灰关联分析结果符合实际情况.灰关联分析方法为中原油田一污水的腐蚀研究提供了新的思路和方法.","authors":[{"authorName":"屈撑囤","id":"2bb026c0-9d50-4d49-92c2-3bd084bb2967","originalAuthorName":"屈撑囤"},{"authorName":"卢会霞","id":"2045d697-0cb6-4dea-8f79-740e7fdf5d7b","originalAuthorName":"卢会霞"},{"authorName":"卜绍峰","id":"50335fa1-2d37-46c8-b40e-16e914c04660","originalAuthorName":"卜绍峰"}],"doi":"10.3969/j.issn.1002-6495.2005.03.019","fpage":"198","id":"1155dffe-6ec8-40df-bae6-2f48cf9d82db","issue":"3","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"57005f5a-87bc-466c-9a3e-3c8cf2b5289f","keyword":"灰关联分析","originalKeyword":"灰关联分析"},{"id":"86252176-5974-412f-b5b2-491eb3cd277b","keyword":"采油污水","originalKeyword":"采油污水"},{"id":"61ffb610-04db-441f-8242-674d9fe23330","keyword":"腐蚀","originalKeyword":"腐蚀"}],"language":"zh","publisherId":"fskxyfhjs200503019","title":"灰关联分析法研究中原油田一污水的腐蚀因素","volume":"17","year":"2005"},{"abstractinfo":"为提高转炉OG系统烟气除尘效率,依据湿法回收工艺除尘机理,对现代湿法除尘工艺进行了研究.针对系统烟气净化环节,着重对RD氏管以及第四代环缝氏管除尘器结构分析,指出两种氏管线性可调性还有待提高.在此基础之上,提出了一种新的重砣设计方法,结果表明改进后的流量控制结构的线性相关系得到很大提高,对转炉OG系统烟气湿法除尘具有重要意义.","authors":[{"authorName":"桂瞬丰","id":"43e2ca97-7387-44e5-9fe7-24a7df8e6655","originalAuthorName":"桂瞬丰"},{"authorName":"幸福堂","id":"46ed36b0-1d0a-4949-b761-912dbcb58e71","originalAuthorName":"幸福堂"},{"authorName":"李群","id":"6e3515a2-22b1-4a2a-bb3c-40b3451d923d","originalAuthorName":"李群燕"}],"doi":"10.14186/j.cnki.1671-6620.2016.02.004","fpage":"97","id":"5ad8b068-15bc-4903-ad90-659a74ea3642","issue":"2","journal":{"abbrevTitle":"CLYYJXB","coverImgSrc":"journal/img/cover/CLYYJXB.jpg","id":"17","issnPpub":"1671-6620","publisherId":"CLYYJXB","title":"材料与冶金学报"},"keywords":[{"id":"e524df90-65c1-4013-b1fe-44664a2e2a60","keyword":"转炉","originalKeyword":"转炉"},{"id":"418c1d2e-3c1a-48c7-98d7-06ebe92cf6a4","keyword":"OG","originalKeyword":"OG"},{"id":"5196eb45-4738-46f1-b9be-80a49006d80e","keyword":"调径氏管","originalKeyword":"调径文氏管"},{"id":"5ff19016-3eb3-404b-8264-a55a812ea14c","keyword":"除尘","originalKeyword":"除尘"}],"language":"zh","publisherId":"clyyjxb201602004","title":"转炉OG系统调径氏管结构的优化","volume":"15","year":"2016"},{"abstractinfo":"东油田气举井由于其所处的生产环境及本身流态特点,腐蚀严重且具有其特殊规律.本文描述了气举井的腐蚀现状;分析了腐蚀影响因素;对气举井缓蚀剂性能进行了评价;介绍了腐蚀防护工艺.为相关油田(油井)腐蚀研究及防护提供了可借鉴的经验.","authors":[{"authorName":"陈普信","id":"d8702698-79fe-4533-b268-696e7cd087de","originalAuthorName":"陈普信"},{"authorName":"张连明","id":"91b8cfe0-fa27-42d2-b15f-8e29596603b0","originalAuthorName":"张连明"},{"authorName":"李荣勤","id":"64bc85c3-62bb-4dee-8520-c7bdce5c8594","originalAuthorName":"李荣勤"},{"authorName":"郑岩","id":"4a4e621e-4152-4a52-af5b-c19c2c551c38","originalAuthorName":"郑岩"},{"authorName":"王选奎","id":"ebceea63-e739-45f6-9dca-641cc5c43933","originalAuthorName":"王选奎"},{"authorName":"郭学辉","id":"bc7d003b-e359-4044-b134-d4d4a70c83e3","originalAuthorName":"郭学辉"}],"doi":"10.3969/j.issn.1005-748X.2000.03.009","fpage":"119","id":"664823f4-aa13-4702-a3fe-e31356c16cd6","issue":"3","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"c68ae78c-6424-4170-9277-bf5d4f7ff11b","keyword":"气举井","originalKeyword":"气举井"},{"id":"71c7e0bd-e5c7-400a-a72b-1ac4b77a8f74","keyword":"腐蚀研究","originalKeyword":"腐蚀研究"},{"id":"5b2e750c-2c88-4f2b-bc8b-f061d5c1db98","keyword":"缓蚀剂","originalKeyword":"缓蚀剂"},{"id":"ceeec023-a889-4eec-9ce6-8602a274f376","keyword":"开发与评价","originalKeyword":"开发与评价"},{"id":"cb663b3e-aa25-482b-bdec-71cf14fafa57","keyword":"防护技术","originalKeyword":"防护技术"}],"language":"zh","publisherId":"fsyfh200003009","title":"东油田气举油井腐蚀研究与防护技术","volume":"21","year":"2000"}],"totalpage":16,"totalrecord":151}