{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"橄榄石型LiFePO4是近年发展起来的一种锂离子电池正极材料,它的理论容量为170 mA·h/g,具有价格便宜、环境友好、无毒、无吸湿性、热稳定性好等优点,越来越受到人们的重视.通过固相法制备LiFePO4,分别考察了摩尔与烧结时间对于LiFePO4的电化学性能的影响.结果表明,最佳的摩尔比为1.05,最佳的烧结时间应为24h,在0.1C倍率下放电,初始放电容量为140.4mA·h/g.","authors":[{"authorName":"曲涛","id":"37dc1bd5-5b18-49b3-b86f-620b475b6ee1","originalAuthorName":"曲涛"},{"authorName":"田彦文","id":"977ee5ba-33a4-43ff-ad54-6368f6bba97b","originalAuthorName":"田彦文"},{"authorName":"丁扬","id":"58fed5d3-34ea-4305-9835-6dee356a1122","originalAuthorName":"丁扬"},{"authorName":"翟玉春","id":"9e210557-ad16-4589-9977-91c73966dd67","originalAuthorName":"翟玉春"}],"doi":"10.3969/j.issn.1671-6620.2005.01.009","fpage":"36","id":"bf687285-7d1e-489e-9461-af5a146c04eb","issue":"1","journal":{"abbrevTitle":"CLYYJXB","coverImgSrc":"journal/img/cover/CLYYJXB.jpg","id":"17","issnPpub":"1671-6620","publisherId":"CLYYJXB","title":"材料与冶金学报"},"keywords":[{"id":"9886264d-422f-48a7-bf26-53cdd4973236","keyword":"锂离子电池","originalKeyword":"锂离子电池"},{"id":"684e949a-0b92-4589-b651-c1ad92d813ed","keyword":"正极材料","originalKeyword":"正极材料"},{"id":"1bf47416-4aa3-4b6e-bd7a-c1518b4403ae","keyword":"LiFePO4","originalKeyword":"LiFePO4"},{"id":"032d25ad-d61b-44fd-a5f4-b1e721295e66","keyword":"摩尔","originalKeyword":"锂铁摩尔比"},{"id":"7158b861-ed8b-4535-ad56-676fa2ff98ae","keyword":"烧结时间","originalKeyword":"烧结时间"}],"language":"zh","publisherId":"clyyjxb200501009","title":"固相法合成锂离子电池正极材料LiFePO4","volume":"4","year":"2005"},{"abstractinfo":"采用沉淀法制备了高能量的LiFePO4/C及纯相LiFePO4正极材料,并用XRD、SEM、傅立叶红外光谱仪、程控充放电仪等对样品的结构和电化学性能进行了测试分析.结果表明,样品具有单一的橄榄石结构和良好的充放电平台,掺碳的LiFePO4具有更优良的性能,粒度较小,粒径分布均匀,振实密度达1.46g/cm3,0.1C首次放电比容量为144.6mAh/g,循环20次后容量保持率为93.2%.","authors":[{"authorName":"李军","id":"783fc4ec-a64f-45c8-9b5f-e362142a98a3","originalAuthorName":"李军"},{"authorName":"郑育英","id":"bf9c000a-54ee-48e2-8b48-8c17a6334b76","originalAuthorName":"郑育英"},{"authorName":"李大光","id":"d2e3a05b-7b54-483a-aabc-28cc5ba19195","originalAuthorName":"李大光"},{"authorName":"黄慧民","id":"dab621ad-b985-48ab-a113-7b866a91aad2","originalAuthorName":"黄慧民"},{"authorName":"赖桂棠","id":"d32c4901-48aa-44b9-bb2d-8a63d65ba4bd","originalAuthorName":"赖桂棠"}],"doi":"","fpage":"138","id":"d96f70e9-a46d-44d5-8f2b-5891a67c0c88","issue":"4","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"1f09bae5-bf80-4443-bba4-b3e5dfd8bc0b","keyword":"锂离子电池","originalKeyword":"锂离子电池"},{"id":"c735dd7c-c7cd-4bc0-8ff3-56554a47d3e1","keyword":"磷酸","originalKeyword":"磷酸铁锂"},{"id":"798b3b42-8a24-44f8-b808-12876b686c40","keyword":"沉淀法","originalKeyword":"沉淀法"},{"id":"ffe4ca40-96d0-46af-91ec-a726d428aa26","keyword":"高能","originalKeyword":"高比能"}],"language":"zh","publisherId":"cldb200804035","title":"新型高能量磷酸的制备及电化学性能","volume":"22","year":"2008"},{"abstractinfo":"利用废弃蛋壳为原料、尿素为添加剂,合成不同Ca/P摩尔的碳羟基磷灰石(CHAP)用于吸附水中Cu2+,利用红外光谱、扫描电子显微镜、X射线能谱测试技术对CHAP样品表面化学进行了表征,考察了环境因子pH值、温度对CHAP吸附Cu2+的影响. 结果表明,通过改变尿素用量可以增加CHAP的Ca/P,提高其比表面积,Ca/P越高的CHAP,吸附能力越强. Ca/P为1.80的CHAP,在pH=7、温度40 ℃、反应时间为60 min时,其对Cu2+吸附量高达37.66 mg/g. 随着CHAP的Ca/P比增大,CHAP对Cu2+吸附的固相-水相分配系数也增大,对吸附量增大很有利.","authors":[{"authorName":"唐文清","id":"8cdbb0e7-e257-4869-9328-1e1b0e427f68","originalAuthorName":"唐文清"},{"authorName":"曾荣英","id":"6b6edb2f-b153-4825-b755-eb65ff1c0e89","originalAuthorName":"曾荣英"},{"authorName":"冯泳兰","id":"1f7c946b-7694-4a4f-99b7-95b4d6a28f2c","originalAuthorName":"冯泳兰"},{"authorName":"余润兰","id":"ca59a75d-941e-4b13-aede-7fc194a4cad5","originalAuthorName":"余润兰"},{"authorName":"曾光明","id":"1611ed69-f25f-4c0a-871b-2c840b69d9db","originalAuthorName":"曾光明"},{"authorName":"李小明","id":"c29f4702-5b19-45a7-a786-c7288d9770b6","originalAuthorName":"李小明"}],"doi":"10.3969/j.issn.1000-0518.2009.07.013","fpage":"807","id":"1d465b36-8b56-43d4-acfc-95d03c061136","issue":"7","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"72f6a8ae-3a7f-4b44-a572-2f2fd4beb740","keyword":"碳羟基磷灰石","originalKeyword":"碳羟基磷灰石"},{"id":"eceba29a-6e31-4d4a-837a-858eb889a478","keyword":"Ca/P","originalKeyword":"Ca/P比"},{"id":"f0dcd412-5dfe-4b3d-96c0-0abf0055aa29","keyword":"铜离子","originalKeyword":"铜离子"},{"id":"6a27fe7f-a5bc-4ee6-9ec7-d71638513f06","keyword":"吸附特性","originalKeyword":"吸附特性"}],"language":"zh","publisherId":"yyhx200907013","title":"不同Ca/P摩尔碳羟基磷灰石对Cu2+的吸附特性","volume":"26","year":"2009"},{"abstractinfo":"研究了不同摩尔比对磷酸盐玻璃陶瓷固化体结构和化学稳定性的影响.用溶解速率法(DR)研究了固化体的化学稳定性,用傅立叶变换红外光谱(FT-IR)和X射线衍射(XRD)方法表征了样品的结构,用全谱直读等离子体发射光谱(ICP-OES)测定浸出液中各元素的含量.研究结果表明,当摩尔比为0.67时,在980(C)下保温3h得到的磷酸盐玻璃陶瓷固化体具有较高的化学稳定性,浸泡42d的质量浸出率变化幅度不大且浸出率较低,约为7.05×109g/(cm2·min),其中Ce、La元素均未检出,其余浸出元素来自玻璃相;固化体的主晶相为独居石,结构中主要含有大量的正磷酸基团[PO4]3和少量的焦磷酸基团[P2O7]1-,不存在偏磷酸基团[PO3].","authors":[{"authorName":"廖春娟","id":"75db9740-16db-468c-ae34-0f0cb8c1a69b","originalAuthorName":"廖春娟"},{"authorName":"廖其龙","id":"cf168350-df0d-41af-8194-c0dfb6f32645","originalAuthorName":"廖其龙"},{"authorName":"牟涛","id":"c1bdc532-7e95-4fb9-9e62-70dca4b0a250","originalAuthorName":"牟涛"},{"authorName":"万小刚","id":"adebdf2d-13ac-4efa-a26f-7fe2aa5abe39","originalAuthorName":"万小刚"}],"doi":"","fpage":"75","id":"cce02c98-6420-43ae-b396-5e6ff63f76b7","issue":"1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"483e83e7-1e3e-42c3-8cdd-8999bf0c87ee","keyword":"磷酸盐玻璃","originalKeyword":"铁磷酸盐玻璃"},{"id":"210b8f93-376d-47ad-a788-76b75a497b8b","keyword":"高放废物","originalKeyword":"高放废物"},{"id":"869139c8-646f-4c7f-873b-3009bc841668","keyword":"玻璃陶瓷","originalKeyword":"玻璃陶瓷"},{"id":"f5d37bd7-17f1-4399-8b44-26e061191276","keyword":"固化体","originalKeyword":"固化体"}],"language":"zh","publisherId":"gncl201301017","title":"摩尔比对磷酸盐玻璃陶瓷固化体的影响","volume":"44","year":"2013"},{"abstractinfo":"本文总结了近化学计量铌酸晶体的不同生长方法及它们各自的特色,分析了摩尔比对晶体性能的影响及Li含量的各种表征方法.通过比较看出,采用K2O助熔剂生长近化学计量铌酸晶体是一种较为实用的途径.基于此,我们采用K2O助熔剂提拉法和助熔剂-坩埚下降法生长了近化学计量铌酸晶体,所得晶体的最大尺寸分别达到45mm×60mm和25mm×40mm.","authors":[{"authorName":"徐家跃","id":"f34b4d0c-6f79-415f-be92-fafc2b65eef1","originalAuthorName":"徐家跃"},{"authorName":"陆宝亮","id":"9c6ee743-cd1b-4c08-9b62-2dd9f78d2d67","originalAuthorName":"陆宝亮"},{"authorName":"夏宗仁","id":"c199b2c1-86f8-41c2-91e6-ef150a2649f8","originalAuthorName":"夏宗仁"}],"doi":"10.3969/j.issn.1000-985X.2003.06.017","fpage":"626","id":"eb1419c7-36d3-4791-9bed-3056f0a29c5b","issue":"6","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"436713cf-c639-4bf2-b96f-4cbbd4701848","keyword":"化学计量","originalKeyword":"化学计量比"},{"id":"cc0b1ae9-83af-4072-9752-8b534ea8b907","keyword":"铌酸","originalKeyword":"铌酸锂"},{"id":"3b0ffe23-5e67-4b82-bc9c-d82c3dc38974","keyword":"晶体生长","originalKeyword":"晶体生长"},{"id":"09f5488b-f91b-4da5-8673-facd3436718c","keyword":"性能","originalKeyword":"性能"}],"language":"zh","publisherId":"rgjtxb98200306017","title":"近化学计量铌酸晶体的研究进展","volume":"32","year":"2003"},{"abstractinfo":"介绍了近化学计量铌酸晶体的主要生长方法及其特点,总结了近化学计量铌酸晶体的主要性能,通过与同成分铌酸晶体的比较,指出了近化学计量铌酸晶体的主要应用优势,明确了该类晶体今后的研究重点.","authors":[{"authorName":"张国春","id":"a832ae9e-4b83-4703-a258-3426086d6e1b","originalAuthorName":"张国春"},{"authorName":"潘世烈","id":"a290478b-f849-46a6-a5eb-4eb455cd24a3","originalAuthorName":"潘世烈"},{"authorName":"徐子颉","id":"24643620-0203-422d-9abf-858fab04fe0e","originalAuthorName":"徐子颉"}],"doi":"","fpage":"5","id":"7f46d627-7bf6-49eb-81b1-0bb48520f23f","issue":"2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"8091dcc3-9126-4682-9b55-6bace8335a09","keyword":"铌酸晶体","originalKeyword":"铌酸锂晶体"},{"id":"d1985da7-e0cd-4e85-a052-5b127715a458","keyword":"化学计量","originalKeyword":"化学计量比"},{"id":"ede4c9e3-7143-49f3-9026-d21a25feeaa7","keyword":"晶体生长","originalKeyword":"晶体生长"}],"language":"zh","publisherId":"cldb200402002","title":"近化学计量铌酸晶体的研究进展","volume":"18","year":"2004"},{"abstractinfo":"综述了近年来-空气电池领域的最新研究进展,总结了-空气电池的充放电机理、空气电极、电解液等方面的研究工作.此外,展望了-空气电池领域今后的发展方向.","authors":[{"authorName":"李慧","id":"6e2545be-c1e8-4d0c-a239-23ccdc9f6da9","originalAuthorName":"李慧"},{"authorName":"吴川","id":"a98e36c8-5048-4845-a3a8-240ce78b3840","originalAuthorName":"吴川"},{"authorName":"吴锋","id":"51c1860a-b9cb-48ae-a02b-4db1fe13bc9c","originalAuthorName":"吴锋"},{"authorName":"白莹","id":"d7d95b64-fcbb-4193-99f1-347e477a06a1","originalAuthorName":"白莹"}],"doi":"","fpage":"1525","id":"8d8bfa43-7d4b-4305-abb7-b650010f7499","issue":"6","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"f2acf757-4be5-4616-90fd-5ca7a500a773","keyword":"-空气电池","originalKeyword":"锂-空气电池"},{"id":"29cd70a4-7e24-4b44-bd3e-1e181348ea28","keyword":"空气电极","originalKeyword":"空气电极"},{"id":"55d0ce1a-d277-42f2-8c16-0c08a7aceea1","keyword":"电解液","originalKeyword":"电解液"},{"id":"9129eb16-c652-437c-8028-b44869337c81","keyword":"催化剂","originalKeyword":"催化剂"}],"language":"zh","publisherId":"xyjsclygc201406050","title":"超高能量-空气电池最新研究进展","volume":"43","year":"2014"},{"abstractinfo":"采取中频加热和TSSG的方法,从掺入了6%(质量分数)K2O的同成分Li2O-Nb2O5熔体中生长出了近化学计量铌酸单晶,其电畴结构为单畴结构,居里温度为1191.5℃.在此基础上,分别掺入0.05%(质量分数),0.16%(质量分数)和0.32%(质量分数)的氧化锰,生长了掺Mn近化学计量的铌酸晶体,其电畴结构也均为单畴结构,居里温度分别为1195.3、1201.5和1219℃.对这4个晶体进行的红外光谱测试的结果表明:均在3466cm-1有一吸收峰.通过二波耦合实验,我们对不同掺杂浓度的4种晶体进行了光折变性能测试.","authors":[{"authorName":"孙志洁","id":"1657d632-aaab-4e8b-bf2d-688a8bce99b4","originalAuthorName":"孙志洁"},{"authorName":"李洪涛","id":"75330a41-3c19-4a07-a9fa-5a4242ba06ed","originalAuthorName":"李洪涛"},{"authorName":"叶少剑","id":"27b5df62-210c-4688-a40e-87bb433235ea","originalAuthorName":"叶少剑"},{"authorName":"蔡伟","id":"3faa940a-53b0-41c9-a223-07f7fad762f4","originalAuthorName":"蔡伟"},{"authorName":"赵连城","id":"8cc54ab9-f1f1-4c9a-8c3f-fc9fbcf34010","originalAuthorName":"赵连城"}],"doi":"","fpage":"169","id":"8281030c-6c6d-4c18-9f92-845b213594a6","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"aa02ae1e-34a2-486d-8d78-4e3f3cdaf44a","keyword":"化学计量铌酸晶体","originalKeyword":"化学计量比铌酸锂晶体"},{"id":"975df344-c812-4c05-ad3d-9c65be9a307e","keyword":"畴结构","originalKeyword":"畴结构"},{"id":"23bc5f1b-8201-48d0-9b66-bd462d0b693b","keyword":"居里温度","originalKeyword":"居里温度"},{"id":"fa11b6a7-be74-4973-883c-eb53d3d8d79d","keyword":"锰掺杂","originalKeyword":"锰掺杂"},{"id":"d325e819-d3b7-4ebf-a267-784d51d256f7","keyword":"二波耦合","originalKeyword":"二波耦合"}],"language":"zh","publisherId":"gncl2004z1030","title":"掺Mn近化学计量铌酸晶体生长及其性质","volume":"35","year":"2004"},{"abstractinfo":"以 Ti,Al,C和 TiC粉末为原料,研究了钛碳摩尔和 Al含量对 Ti-Al-C体系燃烧合成产物相组成的影响.实验表明,不同的钛碳摩尔和 Al含量变化,对 Ti-Al-C体系燃烧合成 Ti3AlC2粉体有很大影响.当 Ti/C=1或 1.5时,燃烧产物主晶相是 TiC,与原料中Al含量变化关系不大;Ti/C=2 和 Ti/C=3时,主晶相分别是 Ti3AlC2和 Ti2AlC,它们的衍射峰强度均分别随原料中 Al含量增加而增强,当 Al含量增加到一定量后, Ti3AlC2和 Ti2AlC的衍射峰强度均又减弱;TiC是 Ti-Al-C体系燃烧合成 Ti3AlC2相的中间产物. ","authors":[{"authorName":"郭俊明","id":"ced54bea-f19f-4dd9-93c0-47fd3abe3beb","originalAuthorName":"郭俊明"},{"authorName":"陈克新","id":"4a275d40-0a65-4094-9edc-06d36cde3812","originalAuthorName":"陈克新"},{"authorName":"葛振斌","id":"798e2a05-4200-4aa2-9481-f52893b3cd84","originalAuthorName":"葛振斌"},{"authorName":"周和平","id":"b997c0c7-d802-4078-845b-ed12efbbe455","originalAuthorName":"周和平"},{"authorName":"宁晓山","id":"81ca3db9-1d9a-4b53-a15d-c02a8ac95cc7","originalAuthorName":"宁晓山"}],"doi":"","fpage":"561","id":"3eee9a54-ab1c-45a4-be32-2b0115e61b21","issue":"7","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"4b1565be-5978-4e49-a1fb-7fc343f2acaa","keyword":"燃烧合成","originalKeyword":"燃烧合成"},{"id":"9625f248-89fe-45e2-aca2-6134c2f6a6c9","keyword":"Ti3AlC2","originalKeyword":"Ti3AlC2"},{"id":"525da652-38d4-4184-b654-e51a07882d15","keyword":"Ti-Al-C系","originalKeyword":"Ti-Al-C系"}],"language":"zh","publisherId":"xyjsclygc200307021","title":"不同钛碳摩尔和铝含量对Ti-Al-C体系燃烧合成Ti3AlC2粉体的影响","volume":"32","year":"2003"},{"abstractinfo":"针对我国大部分盐湖卤水高镁的资源结构特点,的提取困难问题,采用纳滤技术研究镁分离的效果,实验考察了操作条件的影响,包括操作时间、操作压力、进水温度、溶液pH值和镁比对分离的影响.引入镬竞争系数,得出镁截留率之间的关系.同时也研究了Na+、K+、Ca2+离子对镁分离效果的影响.结果表明,Mg/Li、操作压力和pH值对Mg2+和Li+分离效果有较大的影响.对Mg与Li小于45的卤水,纳滤膜对镁分离显示出较大的可行性.一价离子的引入对镁分离产生较为不利的影响.","authors":[{"authorName":"计超","id":"e52acce6-3419-41f7-8b74-cfa451cbdfb9","originalAuthorName":"计超"},{"authorName":"张杰","id":"4d24f8c7-8198-4b9b-b3ea-5fac22152ed0","originalAuthorName":"张杰"},{"authorName":"张志君","id":"80492690-1f13-4936-9677-d39b459a5f6d","originalAuthorName":"张志君"},{"authorName":"孙淑英","id":"fdc28fb2-6acf-48dc-ba22-9c31391f8933","originalAuthorName":"孙淑英"},{"authorName":"李平","id":"aa97dfb8-e233-4159-9a1c-828ab62a3866","originalAuthorName":"李平"},{"authorName":"于建国","id":"b43b1c02-6537-4c32-874f-0cefe3adf915","originalAuthorName":"于建国"}],"doi":"","fpage":"79","id":"fcb48f17-8adf-401a-8511-332bbf425552","issue":"3","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"bab79d18-f442-46c8-b709-d0209bf333a4","keyword":"卤水","originalKeyword":"卤水"},{"id":"3ec5a389-9ee8-4202-af1c-8c3435305800","keyword":"镁分离","originalKeyword":"镁锂分离"},{"id":"55fe52c5-62fe-4de7-a4ea-8cf20d0a7054","keyword":"纳滤","originalKeyword":"纳滤"}],"language":"zh","publisherId":"mkxyjs201403014","title":"DK纳滤膜对高镁卤水的分离性能研究","volume":"34","year":"2014"}],"totalpage":3231,"totalrecord":32301}