雍杨
,
王敬儒
,
张启衡
量子电子学报
doi:10.3969/j.issn.1007-5461.2006.05.003
利用单个特征识别强噪声中的弱小运动目标,常因所提取的目标特征与噪声特征易混淆而导致高的虚警率.提出一种新的基于多特征融合的弱小运动目标识别方法.分析了弱小运动目标的连续相关性、面积及质心位置偏移这三个特征的可靠性及提取方法,对获取的特征值进行归一化后采用多特征融合的方法构造更具有鲁棒性的联合特征,确定了以具有最大多特征融合值为真实目标的决策方法.通过与采用单一特征的目标识别方法进行比较,证明了提出的多特征融合方法能更准确地识别弱小运动目标.
关键词:
图像处理
,
目标识别
,
多特征融合
,
弱小运动目标
,
特征提取
谢盛华
,
张启衡
,
宿丁
量子电子学报
doi:10.3969/j.issn.1007-5461.2007.04.006
在湍流退化图像复原研究中,为了消除大气湍流的影响,提出了一种基于先验信息和正则化技术的盲解卷积图像复原算法.该算法是以极大似然估计为基本原理,将目标图像和点扩展函数的先验信息以惩罚项的形式引入到极大似然函数中,同时利用正则化技术优化目标图像和点扩展函数的估计过程,以增加极大似然估计算法的收敛性和稳定性.通过退化图像的复原实验结果表明,该算法在退化模型完全未知的情况下,可以有效的实现对湍流退化图像的盲复原.
关键词:
图像处理
,
先验信息
,
正则化技术
,
湍流退化图像
,
图像复原