{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用薄膜沸腾CVI法,以LaCl3为催化剂在1000~1100℃下热解二甲苯制备出密度1.67~1.72 g/cm3的C/C复合材料,研究了催化剂含量对其致密化特性、基体微观结构和力学性能的影响。结果表明,催化剂含量由0增加至15 wt%时,热解炭沉积速率升高,其结构由粗糙层( RL)向各向同性( ISO)转变,材料密度和力学性能先升高后降低。含量为3 wt%时材料密度较高,且基体内出现纳米丝状碳( NFC);含量增大至6 wt%后,NFC数量增多,催化剂表面积碳使基体趋于形成RL和ISO混合结构,高催化剂含量下ISO层较厚。催化剂添加后材料的弯曲和剪切强度分别提高约8.1%~33.0%和15.3%~55.7%,含量为6 wt%时性能较佳,弯曲及剪切强度达230.7 MPa和36.6 MPa。高温处理使材料韧性提高,但强度降低,15 wt%时降低较大,弯曲和剪切强度降低约18.6%和14.4%。","authors":[{"authorName":"郑金煌","id":"6a8d6e65-4de7-49d9-bb22-7e5cbf90a345","originalAuthorName":"郑金煌"},{"authorName":"邓海亮","id":"963764cc-e6ac-44be-b95a-b4b0bbd17cef","originalAuthorName":"邓海亮"},{"authorName":"殷忠义","id":"b5519380-d576-4726-9bcb-ee9d9fe68a14","originalAuthorName":"殷忠义"},{"authorName":"姚冬梅","id":"24d014cf-ec4d-49ed-995c-052c97ccab46","originalAuthorName":"姚冬梅"},{"authorName":"苏红","id":"f656abbe-e303-4aba-b1cb-664c2f362182","originalAuthorName":"苏红"},{"authorName":"崔红","id":"1c814e39-b628-4008-b981-bcb17d91df26","originalAuthorName":"崔红"},{"authorName":"","id":"f46a6dc6-1c1e-44a0-bc3a-9be6808c6e2b","originalAuthorName":"张晓虎"},{"authorName":"王坤杰","id":"d7c5f1b3-9b73-4d32-9a65-708d565639a3","originalAuthorName":"王坤杰"}],"doi":"","fpage":"510","id":"c1f730e0-4c4c-4ad2-bada-9271b5dc8608","issue":"5","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"9b6bbd5d-8d43-43f0-b729-a13c05ec502f","keyword":"C/C复合材料","originalKeyword":"C/C复合材料"},{"id":"a8ce8b79-a1c2-4087-8d2a-a1c0b30b28c1","keyword":"稀土镧","originalKeyword":"稀土镧"},{"id":"89577a09-ec6c-4bed-b32f-e37879778e87","keyword":"化学气相渗透","originalKeyword":"化学气相渗透"},{"id":"bebbb88a-7800-4e1a-9d9a-e33499fe4a1e","keyword":"微观结构","originalKeyword":"微观结构"},{"id":"b31c2b93-3d03-447d-8d63-bff4b2ee4374","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"xxtcl201605007","title":"稀土镧催化热解二甲苯制备C/C复合材料及其微观结构与力学性能","volume":"31","year":"2016"},{"abstractinfo":"介绍了喷管炭/炭材料出口锥(CCEC)预制体结构的设计原则、3种预制体成型技术,并简要讨论了预制体结构对炭/炭出口锥材料性能的影响.预制体结构设计须依据喷管工作条件,满足性能稳定、结构稳定、工艺易实现性原则;三维结构和非织造结构比二维结构预制体纤维含量高、性能更优,适合喷管出口锥的预制成型;预制体的结构均匀性、纤维含量是影响CCEC烧蚀性能的关键参数;可通过建立CCCs宏观力学性能与预制体细观结构参数之间的模型预测其结构性能.","authors":[{"authorName":"","id":"9adff470-869d-40d6-98a5-ce766be7b8b7","originalAuthorName":"张晓虎"},{"authorName":"李贺军","id":"3b852f2a-9033-454d-b2df-b390521c8e6f","originalAuthorName":"李贺军"},{"authorName":"郝志彪","id":"44225b24-64c3-44d4-8b70-52dfa38f49f4","originalAuthorName":"郝志彪"},{"authorName":"崔红","id":"84e62fc7-fc17-40b2-9eb8-d4c61b1bd8c2","originalAuthorName":"崔红"}],"doi":"","fpage":"98","id":"0d440f23-16c0-4dea-b81d-ca9da2b8840b","issue":"2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"8ae6c50d-322b-4480-b38a-d348a065bf28","keyword":"炭/炭材料出口锥","originalKeyword":"炭/炭材料出口锥"},{"id":"722d7c6d-be81-4386-b70c-5c20fdd4f5d5","keyword":"预制体结构","originalKeyword":"预制体结构"},{"id":"b84db655-cfef-46ee-8d8c-3c6e7a539de7","keyword":"设计","originalKeyword":"设计"},{"id":"5f26083d-8fff-40e7-a2c8-747645da7e7b","keyword":"成型","originalKeyword":"成型"},{"id":"e1af2c2b-d2f3-4dc2-9f00-ded89d794152","keyword":"性能","originalKeyword":"性能"},{"id":"ebdbcf58-7888-4d8b-a2d8-2f4277a65c94","keyword":"预测","originalKeyword":"预测"}],"language":"zh","publisherId":"cldb200702025","title":"喷管炭-炭材料出口锥预制体技术","volume":"21","year":"2007"},{"abstractinfo":"连续纤维补强增韧碳化硅基陶瓷复合材料具有密度低、强度和韧性高、抗氧化、耐高温等综合性能,已在国外宇航领域得到了广泛的应用.综述了国内外连续纤维补强增韧C/SiC陶瓷复合材料的研究进展,主要包括国内外在增韧机理、基体复合技术、界面技术以及应用等方面的研究进展情况.","authors":[{"authorName":"闫联生","id":"8090a05b-e830-431b-a367-4f1689ae23d0","originalAuthorName":"闫联生"},{"authorName":"李贺军","id":"23247b0c-65b8-46b4-8d92-3b490297f2ee","originalAuthorName":"李贺军"},{"authorName":"崔红","id":"6269139c-4b9a-4bdd-8a6f-7483f7ef408b","originalAuthorName":"崔红"},{"authorName":"","id":"500ce3d7-c875-4a90-8718-e0814462e6de","originalAuthorName":"张晓虎"},{"authorName":"王涛","id":"f467f212-8d72-4259-8007-0d3eb0199e6e","originalAuthorName":"王涛"}],"doi":"","fpage":"60","id":"11aab7c8-ea98-4454-8417-7be0631de81a","issue":"1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"9d4a8b2b-61dd-4dcb-af1c-f98ece8c322a","keyword":"碳化硅基陶瓷复合材料","originalKeyword":"碳化硅基陶瓷复合材料"},{"id":"4a8947b5-a0b7-4dfe-ba33-d2e0c818357d","keyword":"界面","originalKeyword":"界面"},{"id":"82f938ff-9784-4094-b0fa-cc8a3673d256","keyword":"应用","originalKeyword":"应用"}],"language":"zh","publisherId":"cldb200501018","title":"连续纤维补强增韧碳化硅基陶瓷复合材料研究进展","volume":"19","year":"2005"},{"abstractinfo":"采用机械针刺技术, 研究了针刺密度、针刺深度对原位针刺增强碳布网胎迭层预制体结构C/C材料力学性能的影响. 结果表明, 采用高的针刺密度和针刺深度参数, 可获得高的预制体密度和纤维体积分数, 针刺密度和针刺深度对材料层间剪切性能的影响程度比对压缩、弯曲性能的影响程度大, 采用一定密度的碳布网胎时, 在一定范围内, 提高针刺密度和深度能提高材料的力学性能,当针刺密度控制在20~50针/cm2、针刺深度控制在12~16mm时, C/C材料力学性能随两针刺参数值升高而提高; 当针刺密度控制在30针/cm2时, C/C材料弯曲及X-Y向压缩强度分别达到137.68、224MPa, 剪切强度达到15.5MPa, 针刺深度为12mm时, 材料弯曲及X-Y向压缩强度分别达到134.24、213.2MPa, 为较佳的针刺工艺参数.","authors":[{"authorName":"","id":"04b6f4a7-59fd-46d0-96b3-cd57ce156ae4","originalAuthorName":"张晓虎"},{"authorName":"李贺军","id":"727f697f-15ee-4a0f-a52d-3455a743e849","originalAuthorName":"李贺军"},{"authorName":"郝志彪","id":"bf4a4f40-62d3-41d1-9763-bbc68abb1a1a","originalAuthorName":"郝志彪"},{"authorName":"郑金煌","id":"eb65384a-c49d-465b-b27f-2a28e2996899","originalAuthorName":"郑金煌"},{"authorName":"崔红","id":"ffadf705-17bb-45ca-afc5-5732606f782d","originalAuthorName":"崔红"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2007.00963","fpage":"963","id":"3b6bc2d7-455e-4ba6-8afb-5b4b83bac535","issue":"5","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"3e11b3f5-8b09-41ca-b9e1-3b42631ffd22","keyword":"针刺工艺参数","originalKeyword":"针刺工艺参数"},{"id":"b317cffb-eb52-4c82-802d-5cef07ad2724","keyword":" carbon/carbon composites","originalKeyword":" carbon/carbon composites"},{"id":"6729b2cb-9d43-4dae-baa4-47e4edf09404","keyword":" preform structure","originalKeyword":" preform structure"},{"id":"0739c309-e476-4b94-ae1c-2b7cc349db48","keyword":" mechanical property","originalKeyword":" mechanical property"}],"language":"zh","publisherId":"1000-324X_2007_5_18","title":"针刺工艺参数对炭布网胎增强C/C材料力学性能的影响","volume":"22","year":"2007"},{"abstractinfo":"超高温抗氧化材料技术是制约新一代可重复使用液体火箭发动机技术发展的一项重要关键技术,为此国外近年来大力发展超高温(2200~3000℃)抗氧化材料技术.综述了国外新一代可重复使用液体火箭发动机用超高温抗氧化材料的研究进展,主要包括难熔金属及合金、难熔陶瓷材料、难熔碳化物、难熔硼化物和抗氧化C/C复合材料.最后指出了超高温抗氧化材料技术的研究方向.","authors":[{"authorName":"闫联生","id":"89e52a54-c527-447f-b552-a722ccf412d5","originalAuthorName":"闫联生"},{"authorName":"李贺军","id":"2b955497-1f66-4636-82df-3e0b4faec5fe","originalAuthorName":"李贺军"},{"authorName":"崔红","id":"505f4e75-2236-403d-a20e-9f6ac6e6099c","originalAuthorName":"崔红"},{"authorName":"","id":"b5ed2759-6053-4767-a244-ddb043d14935","originalAuthorName":"张晓虎"}],"doi":"","fpage":"41","id":"46897234-c693-49a8-a2ee-807e638f176b","issue":"12","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"d7e29350-d4f5-4362-88ce-d6f5e939097f","keyword":"超高温抗氧化","originalKeyword":"超高温抗氧化"},{"id":"3351d5d5-b1ee-4a6c-8b52-08199cb9a2ed","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"1da91652-9521-4168-9812-ad9e8e5588ef","keyword":"研究进展","originalKeyword":"研究进展"}],"language":"zh","publisherId":"cldb200412012","title":"超高温抗氧化复合材料研究进展","volume":"18","year":"2004"},{"abstractinfo":"以T300无纬布与PAN碳纤维网胎叠层针刺预制体,高温煤沥青为浸渍剂,采用和高压浸渍炭化相结合的液相浸溃方式制备C/C复合材料.通过对材料力学、热物理性能测试及扫描电镜下显微结构的观察分析.可以得出,引入z向网胎纤维,使材料的z向剪切及压缩、x-y向拉伸及弯曲强度较整体毡C/C材料提高.同时,材料的线胀系数表现为各向异性,而热导率各向异性程度低于整体毡C/C材料,材料的制备周期缩短.","authors":[{"authorName":"夏鸿雁","id":"fe96ab7a-679c-4e3b-8b9f-a0a60df885b5","originalAuthorName":"夏鸿雁"},{"authorName":"侯卫权","id":"e0de76e7-c3dd-4f7f-bc80-e9bc0f924475","originalAuthorName":"侯卫权"},{"authorName":"","id":"0358b22e-62fb-4106-abe0-3a5b132ca61a","originalAuthorName":"张晓虎"},{"authorName":"吴书峰","id":"9b7ed062-e1c8-4277-86f6-63c19aa2f17e","originalAuthorName":"吴书峰"}],"doi":"10.3969/j.issn.1007-2330.2008.03.010","fpage":"37","id":"57a147c6-c99d-4d62-85c0-6e9923d7d1d1","issue":"3","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"5a68ae9e-40b4-4505-93f3-3e35347c7c60","keyword":"叠层针刺预制体","originalKeyword":"叠层针刺预制体"},{"id":"344bfa09-cc98-4398-a03e-7f30a9e59ec6","keyword":"液相浸渍","originalKeyword":"液相浸渍"},{"id":"144b6f41-dbbd-470c-a90b-cc14d3ae6441","keyword":"C/C复合材料","originalKeyword":"C/C复合材料"},{"id":"d045feeb-5aab-46c3-8418-676b0c69bac2","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"aaa6bfd5-2151-4ae0-957b-ef29b6e2dde8","keyword":"热物理性能","originalKeyword":"热物理性能"}],"language":"zh","publisherId":"yhclgy200803010","title":"液相浸渍法制备针刺C/C复合材料","volume":"38","year":"2008"},{"abstractinfo":"为了研究C/C材料快速致密的工艺,采用常压炭化和高压炭化联合致密的纯沥青液相炭化工艺,对叠层针刺C/C材料进行致密化处理,使预制体密度由 0.48 g/cm3增至 1.92 g/cm3,对该材料的力学及热学性能进行了测试,与整体毡C/C材料性能进行了对比,并利用扫描电子显微镜观察了材料的显微结构.结果表明,该材料具有较好的力学与热学性能,微观结构界面结合良好.","authors":[{"authorName":"肖春","id":"98ec8aa4-ce4a-4c6b-8e1e-67f667519663","originalAuthorName":"肖春"},{"authorName":"侯卫权","id":"2b441ca6-1624-43e5-8e42-d250f732471c","originalAuthorName":"侯卫权"},{"authorName":"","id":"2e5b90f0-6f03-4339-852b-6a0d86033248","originalAuthorName":"张晓虎"},{"authorName":"嵇阿琳","id":"98a84236-3592-4f52-918f-13a4608e8db5","originalAuthorName":"嵇阿琳"},{"authorName":"韩媚","id":"7b3be414-9aad-4570-8a60-5f252da7a590","originalAuthorName":"韩媚"}],"doi":"10.3969/j.issn.1007-2330.2008.01.010","fpage":"43","id":"76728ce9-8e52-4dcb-8fb5-d92c7a3e2bcf","issue":"1","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"cd764c96-0d4c-48f4-b607-c386a21c3c9a","keyword":"液相炭化","originalKeyword":"液相炭化"},{"id":"d683b678-801d-4fa7-a3a6-37a56a770b3b","keyword":"叠层针刺C/C材料","originalKeyword":"叠层针刺C/C材料"},{"id":"64e100ab-81ee-4033-a671-7281a59bbcf4","keyword":"制备","originalKeyword":"制备"},{"id":"469f814b-bb7e-4108-9165-bdebc5484c33","keyword":"性能","originalKeyword":"性能"}],"language":"zh","publisherId":"yhclgy200801010","title":"液相炭化致密叠层针刺C/C材料的制备及性能","volume":"38","year":"2008"},{"abstractinfo":"研究了液相浸渍及化学气相法致密工艺对二维炭/炭(2D-C/ C)复合材料力学性能的影响,尤其是对层间剪切强度(ILSS)的影响.结果表明:液相浸渍法增密周期短且致密效果好,但材料强度不高;而化学气相沉积(CVD)致密周期长,但材料层剪强度高;采用两种工艺联合致密,材料界面结合强度适中,且层剪强度高.","authors":[{"authorName":"","id":"f80a7dfe-130c-481a-af57-085396de8154","originalAuthorName":"张晓虎"},{"authorName":"李崇俊","id":"f9377770-a86f-42cd-a32c-09d031900f0c","originalAuthorName":"李崇俊"},{"authorName":"崔红","id":"8377d772-3528-463a-8fe2-58a55a19fbff","originalAuthorName":"崔红"},{"authorName":"苏红","id":"b4a35dba-54aa-4cbd-8f53-7241f67a424f","originalAuthorName":"苏红"},{"authorName":"郑金煌","id":"9119b694-ace9-4cc4-a56b-cc9a616e287e","originalAuthorName":"郑金煌"},{"authorName":"黄健","id":"324ef057-fae2-45c9-bb00-1d082b9eaf0a","originalAuthorName":"黄健"}],"doi":"10.3969/j.issn.1007-8827.2001.04.008","fpage":"36","id":"b64f71ec-f549-4ea5-84b1-404167078e3b","issue":"4","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"3fa00f91-6075-40a1-8b1b-2f6ae11b26fe","keyword":"致密工艺","originalKeyword":"致密工艺"},{"id":"436ac649-650f-45f8-87e6-382e1c08fc91","keyword":"2D炭/炭复合材料","originalKeyword":"2D炭/炭复合材料"},{"id":"df5ebcf2-0226-488a-8ef6-f5219bb08438","keyword":"层剪强度","originalKeyword":"层剪强度"}],"language":"zh","publisherId":"xxtcl200104008","title":"致密工艺对炭布增强2D-C/C复合材料力学性能的影响","volume":"16","year":"2001"},{"abstractinfo":"采用失重法、SEM及SSRT等手段研究了不同热处理温度对G3合金局部腐蚀行为的影响.结果表明,G3合金具有优异的抗点蚀性能,而析出相的生成和溶解是影响G3合金点蚀敏感性的主要因素,大量析出相会使合金表面钝化膜的均匀性遭到较大的破坏.随着热处理温度的升高,大量析出相的生成使G3合金钝化膜保护性变差,耐缝隙腐蚀性能变低;在700 ℃热处理时最低,900℃热处理时由于再结晶现象的发生使得析出相在局部区域富集,G3合金耐缝隙腐蚀性能有所提高.G3合金经700℃保温2h空冷后,断口形貌由韧性断裂向脆性断裂转变,材料的应力腐蚀开裂敏感性明显增强.","authors":[{"authorName":"李大朋","id":"bdf423dc-1743-4029-926b-a01a80bcc096","originalAuthorName":"李大朋"},{"authorName":"朱振锐","id":"6b4b4fed-4cfc-4230-ad70-c972802675a2","originalAuthorName":"朱振锐"},{"authorName":"雷","id":"77e8df73-66e5-4df8-aa25-82618bda97c8","originalAuthorName":"张雷"},{"authorName":"陈丽娟","id":"eb6d71d0-50ea-4359-a764-c6562ad49741","originalAuthorName":"陈丽娟"},{"authorName":"路民旭","id":"4dd37c33-34df-4e9a-8613-3fe492d21ec4","originalAuthorName":"路民旭"},{"authorName":"","id":"c83717bb-5800-4167-8e93-96f9ec8e2cf6","originalAuthorName":"张晓虎"}],"doi":"","fpage":"1005","id":"ecd45bfc-8d27-4a4e-a539-6394fe0e392c","issue":"11","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"cb719a60-d781-41dd-924b-0df412d7ee84","keyword":"G3合金","originalKeyword":"G3合金"},{"id":"b3822ee3-0e62-42ac-8402-496392bdd7ca","keyword":"热处理温度","originalKeyword":"热处理温度"},{"id":"ac5ff9d9-805f-4ba2-9365-69113c43e3f9","keyword":"组织","originalKeyword":"组织"},{"id":"55e8d397-8a35-4457-8010-da76ed5d8118","keyword":"点蚀","originalKeyword":"点蚀"},{"id":"06e3be4f-68af-4523-9363-114381db3dc0","keyword":"缝隙腐蚀","originalKeyword":"缝隙腐蚀"},{"id":"9c988687-29a4-4dad-9e17-99a9b906b0a2","keyword":"应力腐蚀开裂","originalKeyword":"应力腐蚀开裂"}],"language":"zh","publisherId":"fsyfh201311011","title":"热处理温度对G3合金局部腐蚀的影响","volume":"34","year":"2013"},{"abstractinfo":"采用高温高压反应釜进行腐蚀模拟试验,采用失重法、SEM等手段研究了流速对N80油管钢CO2腐蚀行为的影响.结果表明,N80油管钢在100 C,0.6 MPaCO2分压时随流速的增大,腐蚀速率几乎呈指数形式增加.低流速时,N80钢腐蚀以全面腐蚀形态为主,流体冲刷的作用有限,但当流速增加以后,局部腐蚀形态愈发明显,流体冲刷显著加剧局部腐蚀的作用.","authors":[{"authorName":"高纯良","id":"5f7c3bb2-ca1e-4ba5-8db2-a68d1fe914f4","originalAuthorName":"高纯良"},{"authorName":"李大朋","id":"51702a7c-5962-43fc-9fc3-5a0b530e0a7a","originalAuthorName":"李大朋"},{"authorName":"雷","id":"089a152c-d36f-4b3c-b61e-962a8f788646","originalAuthorName":"张雷"},{"authorName":"马文海","id":"6d95f2de-cf4a-493e-a39f-ac8f2da48a0f","originalAuthorName":"马文海"},{"authorName":"","id":"e91a5c95-3a17-4389-913c-a59786ced288","originalAuthorName":"张晓虎"},{"authorName":"路民旭","id":"d49ae810-c95e-4c1d-8ffc-b8df23445daf","originalAuthorName":"路民旭"}],"doi":"","fpage":"1090","id":"fca237b6-21e4-4769-b2b8-069188f17eea","issue":"12","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"1ed7e300-e30a-4c62-83c9-4e4a1b66f2dc","keyword":"CO2腐蚀","originalKeyword":"CO2腐蚀"},{"id":"d98f16ea-ec17-4b17-b7d3-5b724048de3c","keyword":"流速","originalKeyword":"流速"},{"id":"6c629e72-0b74-4d69-ab0f-4434a486751a","keyword":"腐蚀速率","originalKeyword":"腐蚀速率"},{"id":"7d30fe21-6795-4de4-ac36-a771303d1b9c","keyword":"腐蚀产物膜","originalKeyword":"腐蚀产物膜"}],"language":"zh","publisherId":"fsyfh201312010","title":"流速对油管用N80钢CO2腐蚀行为的影响","volume":"34","year":"2013"}],"totalpage":25,"totalrecord":250}