{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以4200 mm轧机轧制71块钢板的实测数据为基础,利用Matlab神经网络工具箱,分别建立了轧制变形区的应力状态系数与轧前厚度、轧后厚度及轧辊直径对应关系的Elman神经网络预测模型和RBF神经网络预测模型。结果表明,所建立的两种网络模型均建立了金属应力状态系数输入和输出关系,RBF神经网络模型比Elman网络模型数据稳定,性能更优,实现了与实测结果的高度拟合。并得出不同轧辊直径对神经网络模型精度的影响规律,对轧制工艺规程的制定提出了合理建议。","authors":[{"authorName":"徐如松","id":"9df3fc95-44b1-430d-a21e-8ae98b59899f","originalAuthorName":"徐如松"},{"authorName":"孟令启","id":"14bb533c-e2d9-48ba-8b4d-2db7cb49c727","originalAuthorName":"孟令启"}],"categoryName":"|","doi":"","fpage":"55","id":"b2a3e4ef-9780-4445-9b96-05705ac05087","issue":"5","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"8d18c41a-5e6e-4cce-86f4-0eead09de347","keyword":"应力状态影响系数;神经网络;模型","originalKeyword":"应力状态影响系数;神经网络;模型"}],"language":"zh","publisherId":"1001-0963_2009_5_10","title":"基于神经网络的金属应力状态系数模型","volume":"21","year":"2009"},{"abstractinfo":"以4200 mm轧机轧制71块钢板的实测数据为基础,利用Matlab神经网络工具箱,分别建立了轧制变形区的应力状态系数与轧前厚度、轧后厚度及轧辊直径对应关系的Elman神经网络预测模型和RBF神经网络预测模型.结果表明,所建立的两种网络模型均建立了金属应力状态系数输入和输出关系,RBF神经网络模型比Elman网络模型数据稳定,性能更优,实现了与实测结果的高度拟合.并得出不同轧辊直径对神经网络模型精度的影响规律,对轧制工艺规程的制定提出了合理建议.","authors":[{"authorName":"徐如松","id":"acb55e8c-8825-4cc1-85c6-1343e4b4725e","originalAuthorName":"徐如松"},{"authorName":"孟令启","id":"80251291-4874-45c8-b54f-283d50d51977","originalAuthorName":"孟令启"}],"doi":"","fpage":"55","id":"22eef291-d0e4-4a26-b2e1-66fc2d88d2ab","issue":"5","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"26427d76-f3ee-4edf-9b9b-98d6209782fb","keyword":"应力状态影响系数","originalKeyword":"应力状态影响系数"},{"id":"6416b5e4-08ab-49d4-9c72-88db946dc91a","keyword":"神经网络","originalKeyword":"神经网络"},{"id":"2711891c-4fcf-431f-b296-76f9b84572c0","keyword":"模型","originalKeyword":"模型"}],"language":"zh","publisherId":"gtyjxb200905013","title":"基于神经网络的金属应力状态系数模型","volume":"21","year":"2009"},{"abstractinfo":"利用神经网络方法确定灵敏度系数,建立了冷轧厚度预测模型.该模型能很好地克服外界干扰或参数扰动,是一种能确定厚度控制参数的算法,通过一个单机架上的应用实例表明该方案具有好的应用前途.","authors":[{"authorName":"王春刚","id":"8019dc59-f411-4cc7-9254-d11c2166882b","originalAuthorName":"王春刚"},{"authorName":"方一鸣","id":"a3b3305c-7212-4fe5-a09f-ce75a1696d46","originalAuthorName":"方一鸣"},{"authorName":"范之远","id":"b02a7716-1024-483e-9dc6-44254932588b","originalAuthorName":"范之远"},{"authorName":"高文达","id":"c196d524-5475-4ee1-9610-9870e740f560","originalAuthorName":"高文达"}],"doi":"","fpage":"45","id":"464e65cd-953c-4c8a-9911-25a080e55c42","issue":"2","journal":{"abbrevTitle":"GTYJ","coverImgSrc":"journal/img/cover/GTYJ.jpg","id":"29","issnPpub":"1001-1447","publisherId":"GTYJ","title":"钢铁研究"},"keywords":[{"id":"4626b2cc-8ddc-4a7e-92a1-ced9d1ebcb17","keyword":"BP神经网络","originalKeyword":"BP神经网络"},{"id":"004aa3e9-8322-4544-82c5-6174cf2d3207","keyword":"灵敏度系数","originalKeyword":"灵敏度系数"},{"id":"847e79d0-ef93-4037-86e8-f7637f604ce3","keyword":"厚度预测模型","originalKeyword":"厚度预测模型"},{"id":"61d84f5a-4fa5-4a1b-b437-81afe9560815","keyword":"相关系数","originalKeyword":"相关系数"}],"language":"zh","publisherId":"gtyj200902013","title":"用神经网络方法确定冷轧厚度预测模型灵敏度系数","volume":"37","year":"2009"},{"abstractinfo":"在Geeble-1500热模拟机上对7055铝合金进行热压缩试验,基于热压缩试验数据,建立流变应力的反向传播(BP)神经网络预测模型和加工图.结果表明:用人工神经网络能更精确地预测热压缩过程中的流变应力,预测精度明显高于线性经验公式的;通过预测模型可以获得样本数据值范围内的非样本数据变形条件下的流变应力,其预测结果充分反映该合金的高温变形特征;在本实验条件下,7055铝合金在高温变形时存在一个失稳区,即变形温度在实验温度范围内应变速率为0.025 s-1以上的区域;在375~425 ℃的范围内,应变速率小于0.001 s-1的区域,最大功率耗散系数为0.45;EBSD技术分析表明在安全区发生部分动态再结晶.利用加工图确定了热变形时的流变失稳区, 并且获得了试验参数范围内热变形的最佳工艺参数, 其热加工温度为350-430 ℃低应变速率区.","authors":[{"authorName":"闫亮明","id":"d02feeca-572f-45ef-8ad6-f471bba5454f","originalAuthorName":"闫亮明"},{"authorName":"沈健","id":"c3db81e5-4bd4-4e6c-bf10-b683c29ccc6b","originalAuthorName":"沈健"},{"authorName":"李周兵","id":"1cb761b3-5ca3-4b2c-89b8-9af0cc68eb21","originalAuthorName":"李周兵"},{"authorName":"李俊鹏","id":"77184f08-7860-4bee-ac6a-75a22ebe7d11","originalAuthorName":"李俊鹏"},{"authorName":"闫晓东","id":"284fe9c3-60d9-4878-a020-91ef0612c13c","originalAuthorName":"闫晓东"},{"authorName":"毛柏平","id":"49534d9e-ee34-4f47-bbbe-f8ce1ee4ada0","originalAuthorName":"毛柏平"}],"doi":"","fpage":"1296","id":"ffacdccd-babb-48f0-a7dd-f2291ea3f83c","issue":"7","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"8c8cdb09-40dc-4908-879a-c3fc59f895f2","keyword":"7055铝合金","originalKeyword":"7055铝合金"},{"id":"9c3503fc-ebc8-44f8-8248-494bb692043a","keyword":"流变应力","originalKeyword":"流变应力"},{"id":"41fa2092-df27-48eb-a235-af8ace08a3ea","keyword":"热变形","originalKeyword":"热变形"},{"id":"bcb3e6d5-dbe8-437e-b303-23bddbf28cf3","keyword":"神经网络","originalKeyword":"神经网络"},{"id":"143c32c5-edec-48fc-ae8e-589263cf6206","keyword":"加工图","originalKeyword":"加工图"}],"language":"zh","publisherId":"zgysjsxb201007008","title":"基于神经网络的7055铝合金流变应力模型和加工图","volume":"20","year":"2010"},{"abstractinfo":"通过Zr-2合金在变形温度为750,800℃,变形速率为0.01,1,10 s-1,变形程度为50%,65%的热压缩试验获得数据,采用模糊神经网络方法建立Zr-2合金的晶粒尺寸及流变应力模型.模型的输入参数包括变形温度、变形程度、变形速率等热加工参数,模型的输出为晶粒尺寸和流变应力.结果表明,该模型避免了传统经验回归拟合复杂的数学公式计算,是简单而精确的建模方法,可用于优化热加工参数.","authors":[{"authorName":"林国庆","id":"71bdc767-354b-4c74-bf69-3b7028dabf4d","originalAuthorName":"林国庆"},{"authorName":"李颖","id":"e6a0b7d8-5067-4906-a65b-d0b95b0bba54","originalAuthorName":"李颖"},{"authorName":"王新梅","id":"f012acc1-0c4d-46d2-b26c-3efd52aa4a88","originalAuthorName":"王新梅"}],"doi":"","fpage":"464","id":"1fa1a828-e8d6-48e7-99f6-e7c7539614fb","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"3ddcc34e-a056-4935-9878-4a59bddcf262","keyword":"模糊神经网络","originalKeyword":"模糊神经网络"},{"id":"3c4796d7-cebd-4d8e-8fef-9d45315a9ab3","keyword":"晶粒尺寸","originalKeyword":"晶粒尺寸"},{"id":"47b03277-efae-4b72-acbe-6890ad827bf7","keyword":"流变应力","originalKeyword":"流变应力"}],"language":"zh","publisherId":"xyjsclygc2009z1105","title":"基于模糊神经网络的Zr-2合金晶粒尺寸及流变应力模型","volume":"38","year":"2009"},{"abstractinfo":"轧制过程中,针对4200轧机在轧件宽展变化自动预测和控制,分析了轧制过程中宽展变化的影响因素。在神经网络技术和现场实测数据的基础上,利用Matlab人工神经网络工具箱,应用GRNN广义回归神经网络建立宽展变化预测模型来提高轧制宽展变化预测的精度。结果表明,该方法建立的模型可以实现对宽展变化的预测,其预测精度有较大提高。","authors":[{"authorName":"孟令启","id":"0df6bc79-b808-45a1-813c-06824e975af3","originalAuthorName":"孟令启"},{"authorName":"孟梦","id":"7c6ec060-21a0-49d6-b8ae-f6e1d5a9a9f5","originalAuthorName":"孟梦"}],"categoryName":"|","doi":"","fpage":"23","id":"493171aa-6021-4a61-ba7d-c2630f2c623b","issue":"3","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"8d329922-578e-41f6-9d9b-8495f3e98789","keyword":"中厚板轧机;宽展;GRNN神经网络","originalKeyword":"中厚板轧机;宽展;GRNN神经网络"}],"language":"zh","publisherId":"1001-0963_2008_3_1","title":"基于GRNN神经网络的4200轧机宽展模型","volume":"20","year":"2008"},{"abstractinfo":"轧制过程中,针对4200轧机在轧件宽展变化自动预测和控制,分析了轧制过程中宽展变化的影响因素.在神经网络技术和现场实测数据的基础上,利用Matlab人工神经网络工具箱,应用GRNN广义回归神经网络建立宽展变化预测模型来提高轧制宽展变化预测的精度.结果表明,该方法建立的模型可以实现对宽展变化的预测,其预测精度有较大提高.","authors":[{"authorName":"孟令启","id":"1646277a-165a-43e6-a686-c5f2801532f6","originalAuthorName":"孟令启"},{"authorName":"孟梦","id":"6b81b794-74a8-446a-a6f3-4344fb8b50f5","originalAuthorName":"孟梦"}],"doi":"","fpage":"23","id":"6f67305b-2592-4089-848e-6e2f3346da50","issue":"3","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"a5ee9aec-dfbf-47e5-90e2-d0ca7e30b196","keyword":"中厚板轧机","originalKeyword":"中厚板轧机"},{"id":"4b9c5263-90bf-4a4a-8ab0-9e586cec6a05","keyword":"宽展","originalKeyword":"宽展"},{"id":"b8ee4990-0dd4-489f-ab28-33043c3fd9aa","keyword":"GRNN神经网络","originalKeyword":"GRNN神经网络"}],"language":"zh","publisherId":"gtyjxb200803006","title":"基于GRNN神经网络的4200轧机宽展模型","volume":"20","year":"2008"},{"abstractinfo":"基于神经网络原理,对微合金钢热轧控制参数的选取进行了研究.首先,制定了一套获取样本数据的实验方案.该方案利用Gleeble-1500热力模拟机提取了轧制温度、应变量、应变速率和相应的应力应变曲线,并通过显微观察获取了实验后样品断面的奥氏体晶粒尺寸.通过归一化把实验所得数据进行必要的处理.采用BP算法训练网络,对热轧控制参数(轧制温度、应变量、应变速率)和描述微合金钢组织性能的参数(奥氏体晶粒尺寸及流变应力)之间的映射关系进行了函数逼近,建立了奥氏体晶粒尺寸及流变应力神经网络模型.实践证明,将该神经网络模型运用于热轧控制预报,提高了预测精度并取得较好的效果.","authors":[{"authorName":"孙雷剑","id":"8b4d7f8c-0d1f-4686-b62a-160eb22d141a","originalAuthorName":"孙雷剑"},{"authorName":"牛济泰","id":"0eceb4be-a71a-43b3-910d-65c10a83f93f","originalAuthorName":"牛济泰"},{"authorName":"孟庆昌","id":"b1bb52ba-6c37-489e-9ae4-b0e91fa95482","originalAuthorName":"孟庆昌"}],"doi":"10.3969/j.issn.1005-0299.2000.04.004","fpage":"16","id":"56afb655-c1d5-41af-8a3c-674676f317f0","issue":"4","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"eb33e0ca-8892-420d-8aa3-14cd673dec5f","keyword":"微合金钢","originalKeyword":"微合金钢"},{"id":"b6e3ae9b-6150-4252-a236-ebbbac506094","keyword":"奥氏体晶粒尺寸","originalKeyword":"奥氏体晶粒尺寸"},{"id":"022ec565-3693-4c0f-85ca-34bbd69bcd5d","keyword":"流变应力","originalKeyword":"流变应力"},{"id":"892d4c1c-dab6-4dd2-8325-4e6347bf0a75","keyword":"神经网络","originalKeyword":"神经网络"},{"id":"70a7f606-8963-4aac-af8f-3167d6ba0c98","keyword":"BP算法","originalKeyword":"BP算法"}],"language":"zh","publisherId":"clkxygy200004004","title":"基于神经网络的微合金钢热轧奥氏体晶粒尺寸及流变应力模型的研究","volume":"8","year":"2000"},{"abstractinfo":"在实验数据的基础上,用人工神经网络建立高Co-Ni二次硬化钢的力学性能预测模型,根据网络的预测结果讨论了微量元素Nb、Ti对钢力学性能的影响,结果证明网络的预测同实验基本一致.可见人工神经网络在材料设计方面有广阔的应用前景,它为高性能材料设计提供了新的手段.","authors":[{"authorName":"刘贵立","id":"534691cb-fe59-43a7-960f-22cf35bc8e5e","originalAuthorName":"刘贵立"},{"authorName":"张国英","id":"94e562b9-d9b1-44ea-a400-05bd08e6f99c","originalAuthorName":"张国英"},{"authorName":"曾梅光","id":"9c93f95d-6f9b-4d88-b847-71562209d2e8","originalAuthorName":"曾梅光"}],"doi":"10.3969/j.issn.1001-1447.2000.01.013","fpage":"48","id":"f2fb4e93-d382-4ca2-b9cf-5c6651a7eb37","issue":"1","journal":{"abbrevTitle":"GTYJ","coverImgSrc":"journal/img/cover/GTYJ.jpg","id":"29","issnPpub":"1001-1447","publisherId":"GTYJ","title":"钢铁研究"},"keywords":[{"id":"25f1ac80-ea6f-4876-9ff2-d8244087060f","keyword":"二次硬化钢","originalKeyword":"二次硬化钢"},{"id":"d9ae2bb1-e602-4e67-b24d-c772f63cc87a","keyword":"人工神经网络","originalKeyword":"人工神经网络"},{"id":"17a002fa-01a4-48bd-97e0-10160456fe2c","keyword":"材料力学性能","originalKeyword":"材料力学性能"},{"id":"fb26ba2a-5326-4360-a5ff-4f24aa4e5795","keyword":"微量元素","originalKeyword":"微量元素"}],"language":"zh","publisherId":"gtyj200001013","title":"用人工神经网络模型研究微量元素对钢力学性能的影响","volume":"","year":"2000"},{"abstractinfo":"设计2124铝合金单向拉伸时效成形试验(应力松弛试验),研究试验件单向拉伸时.初始应力水平(σ0)、时效温度(T)、保温时间(t)3因素对试验件应力松弛量(p/%)的影响.将试验数据作为训练样本.建立单拉应力松弛试验BP神经网络模型以预测不同工艺条件下的应力松弛量,并通过追加试验数据对该神经网络模型进行检验.检验结果表明:应用该神经网络模型来预测不同因素下试件应力松弛量精度满足试验预期要求.","authors":[{"authorName":"甘忠","id":"a0de0958-7325-4380-b81f-0c0461f4dfef","originalAuthorName":"甘忠"},{"authorName":"成武冬","id":"a9ec638a-8794-4dbc-9104-5eebb763e577","originalAuthorName":"成武冬"},{"authorName":"许旭东","id":"64cfa227-a80c-4dac-ac6a-d5ebcd0cfef9","originalAuthorName":"许旭东"},{"authorName":"潘栋杰","id":"c15f093d-1cb6-42c3-a3c2-afb1e00163c8","originalAuthorName":"潘栋杰"}],"doi":"10.3969/j.issn.1004-244X.2009.02.011","fpage":"35","id":"9ff69ec3-0e44-494d-b4ba-17a536877575","issue":"2","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"0040a62d-d58d-4b26-a6e1-514f67314a06","keyword":"时效成形","originalKeyword":"时效成形"},{"id":"f8d64727-8dcc-4667-b773-28cb0586a52d","keyword":"铝合金","originalKeyword":"铝合金"},{"id":"66522e60-7445-4a6b-8259-82ab16565e6b","keyword":"应力松弛","originalKeyword":"应力松弛"},{"id":"ffafb792-3837-402c-9c49-9e84b556564b","keyword":"正交试验","originalKeyword":"正交试验"},{"id":"fef880bc-52a1-4563-89c8-ab3ca6d1fe4d","keyword":"BP神经网络","originalKeyword":"BP神经网络"}],"language":"zh","publisherId":"bqclkxygc200902011","title":"BP神经网络预测铝合金应力松弛量研究","volume":"32","year":"2009"}],"totalpage":11267,"totalrecord":112662}