{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"航空发动机涡轮叶片工作时表面经常产生CaO-MgO-Al2O3-SiO2(简称CMAS)等沉积物。本文中研究了电子束物理气相沉积(EB-PVD)制备ZrO2热障涂层(TBCs)在CMAS环境下的热循环行为及失效机制。结果表明, 在1200℃热冲击条件下, 表面涂覆CMAS的热障涂层的热循环寿命低于100次, 而未涂覆CMAS的涂层寿命达到500次以上, CMAS 的存在加速了热障涂层的剥落失效。在1200℃经过210次循环后, ZrO2陶瓷层与CMAS之间形成了约8 μm厚的反应, 其形成主要与CMAS中Ca^2+内扩散有关。CMAS环境下热障涂层陶瓷层产生大量横向裂纹, 涂层的失效主要以陶瓷层片状剥落为主。","authors":[{"authorName":"苗文辉","id":"13a2be97-3d94-4bbf-af04-927ba838bdbd","originalAuthorName":"苗文辉"},{"authorName":"王璐","id":"c6ab31e1-6ba6-4b5d-9a31-f83d571d040d","originalAuthorName":"王璐"},{"authorName":"郭洪波","id":"0789ed24-668a-4e9e-959c-f403af9b4817","originalAuthorName":"郭洪波"},{"authorName":"彭徽","id":"92af38fc-73b2-47e8-9f6a-6546b6536c96","originalAuthorName":"彭徽"},{"authorName":"王凯","id":"7a1368c7-cb10-44c5-accc-7ea0f8749a20","originalAuthorName":"王凯"},{"authorName":"宫声凯","id":"d46458dd-e856-4749-804c-b9cbb5862635","originalAuthorName":"宫声凯"}],"doi":"","fpage":"76","id":"61a1fbc8-e45e-405a-b61a-1e37bb37a4e0","issue":"5","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"ae24af2c-ff4e-458d-8f11-d8845171c58d","keyword":"热障涂层","originalKeyword":"热障涂层"},{"id":"0c67b346-e789-4837-b419-b31bf2d02035","keyword":"循环热冲击","originalKeyword":"循环热冲击"},{"id":"10250491-fe31-46b9-8578-3f5bf8dd950b","keyword":"CMAS","originalKeyword":"CMAS"},{"id":"4665a18a-8dc1-4d38-9f94-b2c3af8b0c95","keyword":"反应","originalKeyword":"互反应区"},{"id":"84f9899a-7001-47d9-ba75-926f99578954","keyword":"失效","originalKeyword":"失效"}],"language":"zh","publisherId":"fhclxb201205013","title":"CMAS环境下电子束物理气相沉积热障涂层的热循环行为及失效机制","volume":"29","year":"2012"},{"abstractinfo":"通过扩散偶技术,利用电子探针(EPMA)研究了Ti-Zr二元合金在β相(950至1150℃)的扩散行为.采用Den Broeder方法及Hall修正法计算了Ti-Zr二元合金的扩散系数,其范围为10-14~10-12 m2/s;计算了扩散激活能Q和频率因子D0,两者均随Zr浓度的增加呈现先增加后减小的规律,其峰值均出现在50at%Zr浓度附近.用Vignes-Birchnenall方法计算了Ti-Zr二元合金在扩散组元极限浓度处的杂质扩散系数,并与用Han修正方法计算的扩散系数进行了对比,二者结果比较接近.","authors":[{"authorName":"冯亮","id":"492334b6-c486-46c5-b1b4-233b1ff2ec7c","originalAuthorName":"冯亮"},{"authorName":"李金山","id":"908872a2-3e08-4842-b2db-eecc0733d9c5","originalAuthorName":"李金山"},{"authorName":"崔予文","id":"bac2a310-14e6-4be9-a069-555d50bdbcd1","originalAuthorName":"崔予文"},{"authorName":"黄磊","id":"de210f5c-5ee0-4c99-b953-6b6ed573634b","originalAuthorName":"黄磊"},{"authorName":"寇宏超","id":"3d725835-bb72-4c34-bfde-4a8739d6b584","originalAuthorName":"寇宏超"},{"authorName":"周廉","id":"35f42d33-3145-42af-ad6e-371d21dc30e9","originalAuthorName":"周廉"}],"doi":"","fpage":"610","id":"155fd2e5-7eee-4166-a330-faf1fe566638","issue":"4","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"1fe900c7-35aa-41f2-8b1f-cc74a908a452","keyword":"Ti-Zr二元合金","originalKeyword":"Ti-Zr二元合金"},{"id":"aa06f72c-4102-4c08-b17a-cedd3e0229a6","keyword":"扩散系数","originalKeyword":"互扩散系数"},{"id":"e03283db-46f5-4df8-8f80-70baabd21271","keyword":"杂质扩散系数","originalKeyword":"杂质扩散系数"},{"id":"164fdf5b-49c8-45c4-9ae1-c6cf377c5081","keyword":"激活能","originalKeyword":"激活能"},{"id":"1c9012f4-016d-4667-875c-0f296e81e79a","keyword":"频率因子","originalKeyword":"频率因子"}],"language":"zh","publisherId":"xyjsclygc201104010","title":"Ti-Zr二元合金在β相扩散行为研究","volume":"40","year":"2011"},{"abstractinfo":"利用动力学软件Dictra中的单相扩散模型模拟计算耐蚀合金与碳钢热等静压扩散焊接结合界面附近的元素浓度分布,并根据热力学相图计算建立获得扩散反应层内微观组织与界面元素浓度分布之间的关系.计算结果表明:该模拟方法能够准确描述热等静压扩散焊接过程中的元素浓度分布规律,同时能够预测扩散反应层内的微观组织变化.在此基础上,利用这一模型计算得出温度和时间对扩散焊接过程中元素扩散规律的影响,结合元素扩散距离与界面结合质量之间的关系,得到耐蚀合金与碳钢可以实现界面良好结合的工艺条件:1050℃/200MPa/2.5~3h,1100℃/200MPa/1h,1150℃/200MPa/0.5h等.","authors":[{"authorName":"焦少阳","id":"d9e6583c-ed59-4bbb-8c37-8651b0d6311d","originalAuthorName":"焦少阳"},{"authorName":"董建新","id":"3e4f52cf-5990-4212-a297-46bdf6c762d7","originalAuthorName":"董建新"},{"authorName":"张麦仓","id":"9beac95e-a077-4054-82e5-6074f5149526","originalAuthorName":"张麦仓"},{"authorName":"谢锡善","id":"45404808-d2b0-45c4-9fdf-69dafeb9e021","originalAuthorName":"谢锡善"}],"doi":"10.3969/j.issn.1001-4381.2009.12.003","fpage":"10","id":"fd09c69f-f0ea-43db-a7c1-3604e53cee2c","issue":"12","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"638f2c1f-f2f8-4b6a-92cd-81e996228e0e","keyword":"热等静压","originalKeyword":"热等静压"},{"id":"9e8a66ff-c0a1-489d-9bf8-a1aefca61a0c","keyword":"扩散焊接","originalKeyword":"扩散焊接"},{"id":"e0e9f036-e03f-4565-8517-22fe376ff924","keyword":"结合界面","originalKeyword":"结合界面"},{"id":"541e812f-c859-4ea7-85db-f38e3574b871","keyword":"扩散距离","originalKeyword":"扩散距离"}],"language":"zh","publisherId":"clgc200912003","title":"耐蚀合金/碳钢热等静压扩散焊接反应层元素扩散规律研究","volume":"","year":"2009"},{"abstractinfo":"建立了热等静压扩散连接的数学模型,利用DICTRA软件与Thermal-Calc软件相结合的方法计算了不同温度、不同时间热等静压扩散连接界面反应层元素的扩散规律与相分布情况,并根据计算结果给出了建议的扩散连接工艺范围,为工艺参数的设计提供了理论依据.计算结果表明:与时间相比,温度对扩散连接界面的元素扩散影响更大.针对DD407/FGH95合金系,扩散连接温度应选择在1120-1210℃的温度区间内.综合考虑扩散连接的元素扩散宽度及界面元素富集情况,1120℃时扩散连接的合理扩散时间为3-5 h,1170和1210℃时扩散连接的合理扩散时间为1-3 h.","authors":[{"authorName":"姚瑶","id":"6186be91-1178-4a8c-8a3d-e64861116fcc","originalAuthorName":"姚瑶"},{"authorName":"叶建水","id":"765ed2ba-8692-47c5-9108-3751ba8ef042","originalAuthorName":"叶建水"},{"authorName":"董建新","id":"870102bc-b581-42f9-b026-d0aa393d1fec","originalAuthorName":"董建新"},{"authorName":"姚志浩","id":"5328cb06-205e-48ce-a43d-5aa14cd65be4","originalAuthorName":"姚志浩"},{"authorName":"张麦仓","id":"399ce5ba-55f4-4bf7-927c-861d74b22d4c","originalAuthorName":"张麦仓"},{"authorName":"国为民","id":"01bdaf7a-e488-4cf1-9c7a-fb42c1bc1cfe","originalAuthorName":"国为民"}],"doi":"10.3724/SP.J.1037.2013.00105","fpage":"1041","id":"171e6d11-0edb-4733-88f8-1c5f07b7b363","issue":"9","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"be01c1d6-5ca0-4c82-8591-04c8f22df594","keyword":"DD407/FGH95合金","originalKeyword":"DD407/FGH95合金"},{"id":"1ae9681a-c390-41aa-871b-89e91661e4b0","keyword":"DICTRA软件","originalKeyword":"DICTRA软件"},{"id":"2b67e286-1695-4396-a5af-06616a860eb4","keyword":"扩散连接","originalKeyword":"扩散连接"},{"id":"b3a1943c-19e3-4dcf-8bbf-6512404c249d","keyword":"热等静压","originalKeyword":"热等静压"}],"language":"zh","publisherId":"jsxb201309003","title":"DD407/FGH95合金热等静压扩散连接反应层元素扩展规律Ⅰ.扩散连接模型的建立","volume":"49","year":"2013"},{"abstractinfo":"以端羟基聚丁二烯(HTPB)、异佛尔酮二异氰酸酯(IPDI)、甲基丙烯酸甲酯(MMA)、丙烯酸乙酯(EA)为原料,通过同步法制备了聚氨酯(PU)/聚丙烯酸酯(P(MMA-EA))穿网络聚合物(Interpenetrating polymer net-work,IPN)型衬层.采用示差扫描量热法(DSC)研究了IPN衬层的固化反应动力学,运用Kissinger极值法、Crane法确定了固化反应动力学参数.并采用傅里叶红外光谱(FTIR)及流变仪分别对固化反应速率及粘度增长速率的影响因素进行了研究.研究结果表明,随着PU和P(MMA-EA)两体系配比的接近,IPN衬层的固化反应表现活化能逐渐降低,反应速率加快,反应级数均接近1.065;反应温度及丙烯酸酯含量的变化对-NCO的消耗速率影响很大;反应温度、固化参数、交联参数及硬段含量均对粘度增长速率有较大影响.","authors":[{"authorName":"张兵","id":"74d22925-977c-412e-8739-9c5fd8a9dd3a","originalAuthorName":"张兵"},{"authorName":"韩生","id":"0be19d67-9333-4d2f-b70d-30c9d3cb8ad9","originalAuthorName":"韩生"},{"authorName":"左海丽","id":"1afcf96e-6f7b-41e6-9ea1-b9c9ab51fc34","originalAuthorName":"左海丽"},{"authorName":"黄洪勇","id":"d442c149-d696-496a-ab4e-46bf97ce9a92","originalAuthorName":"黄洪勇"}],"doi":"","fpage":"67","id":"f676809f-53e8-4609-a8d7-2d26b1fd0045","issue":"10","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"fe36a9ea-5e47-4417-a59b-22cb4976f3a8","keyword":"聚氨酯","originalKeyword":"聚氨酯"},{"id":"84df27e6-c816-45f4-94c6-7dcf004ca154","keyword":"丙烯酸酯","originalKeyword":"丙烯酸酯"},{"id":"f0d60ef2-6661-40b8-bf4a-78745250cb96","keyword":"穿聚合物网络","originalKeyword":"互穿聚合物网络"},{"id":"f6de7853-1ebd-4ce4-b07c-03735afcd9a0","keyword":"衬层","originalKeyword":"衬层"},{"id":"b5046816-cae4-4be0-92f0-d786ca90bf66","keyword":"反应动力学","originalKeyword":"反应动力学"}],"language":"zh","publisherId":"cldb201410017","title":"聚氨酯/丙烯酸酯穿网络聚合物型衬层的固化反应研究","volume":"28","year":"2014"},{"abstractinfo":"采用FT-IR法研究了增塑同步穿网络PU/PGMA的反应动力学.研究了反应温度、引发体系、引发剂浓度、不同组分比等因素对反应动力学的影响,得到PU和PGMA反应均为二级动力学反应,且PU与PGMA的反应由于体系粘度的变化,存在着相互作用.PU反应受PGMA的快速反应的影响而受到抑制.","authors":[{"authorName":"刘轶群","id":"300fd357-ec76-47cc-bfba-192823c19f84","originalAuthorName":"刘轶群"},{"authorName":"高同斋","id":"3b133285-97db-480a-a6e3-c2efa913f8da","originalAuthorName":"高同斋"},{"authorName":"陈福泰","id":"1cef1aa2-f857-4405-a71a-c71b9a968405","originalAuthorName":"陈福泰"},{"authorName":"多英全","id":"14135e6f-fcaf-4f96-8575-eb7055877968","originalAuthorName":"多英全"},{"authorName":"谭惠民","id":"ba049317-8f8e-485c-a8d1-70c956155e5d","originalAuthorName":"谭惠民"}],"doi":"","fpage":"134","id":"c9f1cde8-31dd-4a76-a64b-b57b06a9e177","issue":"6","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"876c4cf4-f459-42ea-a1c6-c436481dce5c","keyword":"聚氨酯","originalKeyword":"聚氨酯"},{"id":"2a4e201f-1ea5-48ac-88c9-827582ed7fb8","keyword":"穿聚合物网络","originalKeyword":"互穿聚合物网络"},{"id":"030e9e78-6f2b-44b4-be74-623c7b38a5e7","keyword":"甲基丙烯酸缩水甘油酯","originalKeyword":"甲基丙烯酸缩水甘油酯"},{"id":"5f592d42-9add-455c-9c4a-3fa30b25c83f","keyword":"动力学","originalKeyword":"动力学"},{"id":"6d61839a-8030-4ebf-89be-527c2ce18da2","keyword":"傅利叶变换红外光谱","originalKeyword":"傅利叶变换红外光谱"}],"language":"zh","publisherId":"gfzclkxygc200006038","title":"增塑聚氨酯/聚甲基丙烯酸缩水甘油酯同步穿网络的反应动力学研究","volume":"16","year":"2000"},{"abstractinfo":"采用水冷铜板试验装置,配合实验室自制系列烧结焊剂进行焊接试验,以快速提取出埋弧焊激冷态熔滴金属,借助于LECO氧氮联测仪对提取的熔滴金属进行氧氮含量分析、同时对熔滴内部形貌进行扫描电镜观察及EP-MA微成分分析,以此对埋弧焊熔滴反应的增氧机制作一些分析讨论.","authors":[{"authorName":"李晓泉","id":"0361cb6f-3ac8-4008-bb1c-5a9d226f27f1","originalAuthorName":"李晓泉"},{"authorName":"刘鹏飞","id":"ebbeabd1-8d6c-4415-a7cd-976ec86a4784","originalAuthorName":"刘鹏飞"},{"authorName":"王光耀","id":"62296253-f4b2-4e32-a408-8e3e29628f35","originalAuthorName":"王光耀"}],"doi":"10.3969/j.issn.1005-5053.2006.01.015","fpage":"63","id":"d0cfd684-7cee-488f-9785-213b9852edf5","issue":"1","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"12c1da41-ed40-4679-ae9b-30c9924febdc","keyword":"埋弧焊","originalKeyword":"埋弧焊"},{"id":"7733cd66-af3b-46f1-a700-83a0d75d6851","keyword":"熔滴金属","originalKeyword":"熔滴金属"},{"id":"8776940e-f824-4cd2-891f-972cad207181","keyword":"增氧机制","originalKeyword":"增氧机制"}],"language":"zh","publisherId":"hkclxb200601015","title":"SAW焊接熔滴反应增氧机制探讨","volume":"26","year":"2006"},{"abstractinfo":"对DD407/FGH95合金系进行了1120℃/120 MPa/3 h,1170℃/120 MPa/3 h和1210℃/120 MPa/3 h3个工艺参数下的热等静压扩散连接实验,实验分析扩散元素分配规律与计算结果基本吻合,验证了利用DICTRA与Thermal-Calc软件结合计算扩散连接界面元素分布情况的准确性.进而给出了利用元素和相分布模拟结果对实验进行预测的依据,提出扩散连接温度应在1170-1200℃之间选择,可避免界面大γ'相出现.结合理论计算和实验分析,建立了粉末高温合金与单晶高温合金HIP扩散连接工艺选择原则.","authors":[{"authorName":"姚瑶","id":"31623489-0214-444b-bb48-8ebb1b3f9513","originalAuthorName":"姚瑶"},{"authorName":"董建新","id":"c05bd95a-621d-44b8-912c-0ee5a4d0f615","originalAuthorName":"董建新"},{"authorName":"姚志浩","id":"d56fc125-c52e-4a16-bf1d-35d297df22e9","originalAuthorName":"姚志浩"},{"authorName":"张麦仓","id":"6a9d0eec-d143-439f-9ca2-eb2f96f266ff","originalAuthorName":"张麦仓"},{"authorName":"国为民","id":"eec02159-1178-4564-a659-5c77a58e75ae","originalAuthorName":"国为民"}],"doi":"10.3724/SP.J.1037.2013.00106","fpage":"1051","id":"5ecad60e-e11c-414d-9996-9e4bc7b7c8c4","issue":"9","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"0e85d873-a1e8-4217-8026-2226f9cdd850","keyword":"DD407/FGH95合金","originalKeyword":"DD407/FGH95合金"},{"id":"4362a940-9fd6-4cbd-ae9a-845f0c47e5a1","keyword":"组织形貌","originalKeyword":"组织形貌"},{"id":"b3099c5c-fab7-4314-9438-f070deb4cd67","keyword":"扩散连接","originalKeyword":"扩散连接"},{"id":"390ef8f5-e9c1-4151-8263-0c5d2d73e316","keyword":"热等静压","originalKeyword":"热等静压"}],"language":"zh","publisherId":"jsxb201309004","title":"DD407/FGH95合金热等静压扩散连接反应层元素扩展规律Ⅱ.模型验证及实验分析","volume":"49","year":"2013"},{"abstractinfo":"本文研究了Ni-Cu扩散偶界面元素的扩散行为.对热压扩散连接法制备的Cu-Ni-Cu扩散偶进行退火处理,采用电子探针显微成分分析仪观察扩散偶界面扩散的微观组织特征,结合Boltzmann-Matano法研究扩散区内元素的扩散行为.结果表明:在扩散偶界面处Cu原子的扩散通量远大于Ni原子的扩散通量,扩散区内Ni原子的距离-浓度曲线关于Matano面不对称,暗示扩散系数与Ni原子的浓度有关.在每一种退火温度下,扩散系数均随扩散α固溶体中Ni原子分数的增加而单调增大,并且随α固溶体中Ni原子分数的增加,频率因子和扩散激活能均单调增大.","authors":[{"authorName":"任晓","id":"81164f5f-959d-4f33-966f-2bb8da1676b0","originalAuthorName":"任晓"},{"authorName":"陈国清","id":"5ede7b36-710e-4e82-a1b1-c52616c91e20","originalAuthorName":"陈国清"},{"authorName":"周文龙","id":"cc3b05bb-6140-415f-8b74-53d9a007016e","originalAuthorName":"周文龙"},{"authorName":"张俊善","id":"3e59df63-ce7a-4646-8d80-be84cbec7f05","originalAuthorName":"张俊善"}],"doi":"","fpage":"735","id":"fbe30370-f72b-4728-9ce3-230d6ae5dbab","issue":"3","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"82657c09-d06f-4909-a876-30139ce42a72","keyword":"Ni-Cu","originalKeyword":"Ni-Cu"},{"id":"05d55787-f5f2-46fa-a8a8-b340ec96a045","keyword":"扩散偶","originalKeyword":"扩散偶"},{"id":"a9d6df64-342f-4af1-81a2-4bc585a8cc53","keyword":"扩散","originalKeyword":"互扩散"},{"id":"be3f8bc6-3ba5-453f-a1af-e8e6ba290d2c","keyword":"扩散系数","originalKeyword":"扩散系数"}],"language":"zh","publisherId":"gsytb201203051","title":"Ni-Cu扩散偶元素扩散行为研究","volume":"31","year":"2012"},{"abstractinfo":"通过对碳热还原法合成TiB2反应体系的热力学分析,绘制了Ti-C-O系统、B-C-O系统的优势相图.并在此基础上,通过对Ti-C-O系统、B-C-O系统的优势相图叠加,得到了TiO2-B2-O3-C系统的优势相图叠加图.优势相图叠加分析表明,在碳热还原法合成TiB2粉末的过程中,降低反应体系中CO分压,有利于TiB2合成反应的进行.在以上分析的基础上,确定了碳热还原法合成TiB2粉末的合成工艺,并合成了纯度较高、晶形发育完整的TiB2粉末.","authors":[{"authorName":"马爱琼","id":"0634e5d4-5ed0-4e35-9c12-8ce884d3a3e9","originalAuthorName":"马爱琼"},{"authorName":"蒋明学","id":"41094eaa-fa98-4bf7-bdb2-eb8983e8d86c","originalAuthorName":"蒋明学"},{"authorName":"高云琴","id":"b2baa679-76b7-4889-8d10-52c658f98e58","originalAuthorName":"高云琴"},{"authorName":"杜习乾","id":"f20c3106-cbba-4e21-8951-7b4eddc58abd","originalAuthorName":"杜习乾"}],"doi":"","fpage":"480","id":"ca887715-c10c-4195-824d-65f2b3631b58","issue":"2","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"2166a3a4-0d62-4615-9a61-a59469fd0b59","keyword":"TiB2","originalKeyword":"TiB2"},{"id":"337a42e3-fb63-47fa-8600-f311bf625ef9","keyword":"优势相图","originalKeyword":"优势区相图"},{"id":"ba1e6085-6bb2-4e87-b831-69bb71bc2e62","keyword":"叠加分析","originalKeyword":"叠加分析"},{"id":"a7ef68f7-4a1c-4052-a577-405518de9a51","keyword":"碳热还原反应","originalKeyword":"碳热还原反应"}],"language":"zh","publisherId":"rgjtxb98201102039","title":"对TiB2合成反应体系的优势相图叠加分析","volume":"40","year":"2011"}],"totalpage":3902,"totalrecord":39014}