{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用扫描电镜(SEM)、X射线衍射(XRD)、透射电镜(TEM)研究稀土Y对Mg-2Nd-0.5Zn-0.4Zr生物镁合金显微组织的影响,通过析氢、质量损失测试及电化学方法研究Mg-2Nd-0.5Zn-0.4Zr镁合金在模拟体液(SBF)中的生物腐蚀性能。结果表明:稀土Y的添加使得镁合金中析出相由连续分布变为断续状,分布趋于均匀,出现新的片状析出相Mg24Y5。稀土Y能使镁合金的耐生物腐蚀性能得到提高。添加1%的Y时,镁合金腐蚀速度最低为1.051 mm/a,仅为基础合金的40.81%。","authors":[{"authorName":"程丹丹","id":"0a1aa54a-d2dc-4d1c-9523-0dcb50ea4b17","originalAuthorName":"程丹丹"},{"authorName":"文九巴","id":"ab2cf906-04f8-4712-b6e8-240c934f0023","originalAuthorName":"文九巴"},{"authorName":"贺俊光","id":"727943e7-85ef-41aa-a4b4-c0af6d95ebe8","originalAuthorName":"贺俊光"},{"authorName":"姚怀","id":"0b6816b9-02f8-4484-896c-241640e4c432","originalAuthorName":"姚怀"},{"authorName":"梁明岗","id":"811c766d-8f45-4048-ac4c-55968ff82a4a","originalAuthorName":"梁明岗"}],"doi":"","fpage":"2783","id":"8605707e-1d29-47aa-a620-23b7a6514173","issue":"10","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"cfd6614b-d46e-4fde-aae5-46b7651eb951","keyword":"稀土Y","originalKeyword":"稀土Y"},{"id":"32dd0643-1836-4d36-9613-8b15e5141160","keyword":"生物镁合金","originalKeyword":"生物镁合金"},{"id":"d3f5778d-3bc1-4d8d-a8ff-4049de493c22","keyword":"生物腐蚀性能","originalKeyword":"生物腐蚀性能"},{"id":"f88f485e-fde3-4093-b426-365f1c6f855e","keyword":"电化学性能","originalKeyword":"电化学性能"}],"language":"zh","publisherId":"zgysjsxb201510021","title":"稀土Y对Mg-2Nd-0.5Zn-0.4Zr镁合金生物腐蚀性能的影响","volume":"","year":"2015"},{"abstractinfo":"目的 在医用镁合金骨螺钉表面构建羟基磷灰石涂层,有效控制其降解速率.方法 利用微弧电泳/水热复合方法,在形貌复杂的骨螺钉表面制备涂层.该方法首先利用电解抛光对骨螺钉表面进行表面预处理,采用微弧电泳技术在其表面制备羟基磷灰石涂层,再利用水热合成对微弧电泳涂层进行封孔.利用XRD、SEM、AFM等分析手段对涂层显微结构进行分析,利用体外浸泡实验和电化学实验对涂层耐腐蚀性能及其对钙磷盐的诱导特性进行了评价.结果 在电解抛光电流0.14A、抛光时间2min的工艺条件下进行电解抛光预处理,可以提高基体和涂层的结合性能.由于骨螺钉的特殊形状,在微弧电泳电解液中添加丙三醇,并通过调整电解液中丙三醇含量优化微弧电泳工艺(电压155 V,反应时间20 min),能有效抑制尖端放电现象,防止膜层组织疏松和大量的氧化物堆积,以及涂层剥落甚至基体烧蚀的现象.再优化水热合成工艺参数(处理液pH值8.5,反应时间1.5h,反应温度393 K)对微弧电泳涂层进行封孔,得到微弧电泳/水热复合涂层.结论 微弧电泳/水热复合涂层表面形貌为菜花状结构,由纳米棒状羟基磷灰石组装而成,均匀致密,结晶性好.电化学腐蚀测试表明,制备复合涂层后,骨螺钉的腐蚀电流密度降低了一个数量级.在模拟体液中浸泡6天,骨螺钉的形貌依然完整,说明水热复合涂层在改善生物相容性的同时,提高了骨螺钉的耐腐蚀性能.但微动摩擦磨损测试显示,水热复合封孔处理后磨损性能下降.","authors":[{"authorName":"朱世杰","id":"9dac8c53-fe08-4685-b737-a2abb6650642","originalAuthorName":"朱世杰"},{"authorName":"王剑锋","id":"3fb338d8-fc07-477d-8214-53240d9ce96f","originalAuthorName":"王剑锋"},{"authorName":"刘欣玉","id":"79b7cadb-5a5a-43c3-ba33-b41d389795fc","originalAuthorName":"刘欣玉"},{"authorName":"王利国","id":"6427a7aa-c152-49cc-b1dc-dad4bf4957a3","originalAuthorName":"王利国"},{"authorName":"任晨星","id":"fb36db54-28fb-417c-b94e-254f166d8a8d","originalAuthorName":"任晨星"},{"authorName":"常蕾","id":"52c167f7-ee64-403c-8fa0-96ac515d545f","originalAuthorName":"常蕾"},{"authorName":"王俊","id":"99341704-40d8-4f0d-b6b8-5f52acb77c88","originalAuthorName":"王俊"},{"authorName":"关绍康","id":"9f23efe3-f592-4b12-8b3c-2e07815b6ce0","originalAuthorName":"关绍康"}],"doi":"10.16490/j.cnki.issn.1001-3660.2017.03.003","fpage":"20","id":"2b7d0407-1e62-4005-a6eb-6dcf1120a675","issue":"3","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"b3bd71ca-9dd9-4ac2-adee-8e8b6e8389d2","keyword":"生物镁合金","originalKeyword":"生物镁合金"},{"id":"232ec63e-4dd4-4ece-aebe-bc24c30dbde2","keyword":"骨螺钉","originalKeyword":"骨螺钉"},{"id":"c1e7034b-cadd-4d0f-b58b-7bacc6f7c79a","keyword":"电解抛光","originalKeyword":"电解抛光"},{"id":"97e657b0-b87f-440a-974a-32d4e195284f","keyword":"微弧电泳","originalKeyword":"微弧电泳"},{"id":"6017666a-3188-4115-8292-d8707db8c0b0","keyword":"水热合成","originalKeyword":"水热合成"},{"id":"a163e355-a39b-44df-a05c-adcee52b8d47","keyword":"复合涂层","originalKeyword":"复合涂层"},{"id":"5ada04d0-7918-4be9-a630-0c7a15b41c8c","keyword":"羟基磷灰石","originalKeyword":"羟基磷灰石"}],"language":"zh","publisherId":"bmjs201703004","title":"可降解镁合金骨螺钉表面微弧电泳水热复合涂层的制备与性能","volume":"46","year":"2017"},{"abstractinfo":"利用OM、SEM、质量损失测试、电化学测试与拉伸试验研究了挤压温度对Mg-2Zn-0.4Zr-0.6Ce生物镁合金组织与性能的影响.结果表明,热挤压后合金发生动态再结晶,合金的组织均由细小的再结晶晶粒与原始晶粒组成.在470~510℃范围内随着挤压温度的升高,合金再结晶晶粒体积分数逐渐增大,晶粒尺寸变化不明显,合金的腐蚀速率与腐蚀电流密度Ic..先减小后增大,容抗弧半径先增大后减小.挤压温度为490℃时,合金的耐蚀性最好,腐蚀速率为0.9337 mm.a-1,腐蚀电流密度为4.67 μA·cm-2.由于细晶强化与位错强化作用,热挤压后合金的强度得到提高,随着挤压温度的升高,合金的抗拉强度和伸长率先增大后减小.挤压温度为490℃时,合金的综合力学性能最好,合金的抗拉强度与伸长率分别为259.1 MPa与14.1%.","authors":[{"authorName":"文九巴","id":"60585b08-62d6-42d7-a5cb-48365199226c","originalAuthorName":"文九巴"},{"authorName":"雷少帆","id":"eb423486-5e15-4cb8-b5ad-d20a706d4233","originalAuthorName":"雷少帆"},{"authorName":"刘亚","id":"e23aaba6-14ea-4d46-8b59-9e466f412309","originalAuthorName":"刘亚"},{"authorName":"贺俊光","id":"c8623866-46c9-47ca-9f5a-60419c60a4cd","originalAuthorName":"贺俊光"}],"doi":"10.13289/j.issn.1009-6264.2017-0014","fpage":"67","id":"489b6203-0623-405d-8c09-243d78503f35","issue":"6","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"6461173b-4cf9-40da-80b6-b2dc4ed3b5e5","keyword":"生物镁合金","originalKeyword":"生物镁合金"},{"id":"e97eaa24-7bff-4285-b05a-2927f0cbcadf","keyword":"热挤压","originalKeyword":"热挤压"},{"id":"a8878907-6ce8-4642-a8c8-a5d03119578e","keyword":"耐蚀性","originalKeyword":"耐蚀性"},{"id":"d8c84ec4-4048-4dee-a7ef-b107e190e91c","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"jsrclxb201706011","title":"挤压态Mg-2Zn-0.4Zr-0.6Ce生物镁合金组织与性能","volume":"38","year":"2017"},{"abstractinfo":"利用扫描电子显微镜(SEM)、电子背散射衍射(EBSD)和X-射线衍射(XRD)分析了元素Zn、Ag对热挤压单相生物镁合金微观组织及力学性能的影响.X射线衍射结果表明元素Zn和Ag的添加没有改变镁合金的相组成及晶体结构.与未添加Zn和Ag元素的合金相比,添加3% Zn元素镁合金(Mg-3Zn合金)的屈服强度由101 MPa提高到121 MPa,抗拉强度由188 MPa提高到228 MPa,而延伸率由17.86%降低至12.57%.进一步添加0.5%的元素Ag后,合金(Mg-3Zn-0.5Ag合金)的屈服强度和抗拉强度没有明显变化,但延伸率提高至14.77%.EBSD和XRD织构分析结果表明,添加合金元素Zn和Ag后镁合金的晶粒尺寸增大,晶粒中的孪晶数量减少,但{0002}基面织构强度增加,这是其力学性能差异的根本原因.","authors":[{"authorName":"赵虹","id":"f3c13258-0233-4d69-af9f-b84a77cf5f12","originalAuthorName":"赵虹"},{"authorName":"王利卿","id":"27832f9d-4a44-477b-8e16-bd86cfcf2cee","originalAuthorName":"王利卿"},{"authorName":"杨波","id":"5cfe9211-affb-4f11-89a4-0c4fbc4a63e0","originalAuthorName":"杨波"},{"authorName":"孙世能","id":"849285f6-817b-4711-89eb-2f75cc1bbbc0","originalAuthorName":"孙世能"},{"authorName":"任玉平","id":"97468c7e-2e2a-4dbd-a24f-2b43aad263fe","originalAuthorName":"任玉平"},{"authorName":"潘虎成","id":"5600937a-cc8d-44d6-bd96-18baf9010387","originalAuthorName":"潘虎成"},{"authorName":"秦高梧","id":"6cc2bca0-8e33-4e9a-9787-795633e85fca","originalAuthorName":"秦高梧"}],"doi":"10.3969/j.issn.2095-1744.2017.02.001","fpage":"1","id":"a5762c6e-3e84-4473-b4c8-0ae5b37d55f6","issue":"2","journal":{"abbrevTitle":"YSJSGC","coverImgSrc":"journal/img/cover/YSJSGC.jpg","id":"76","issnPpub":"2095-1744","publisherId":"YSJSGC","title":"有色金属工程"},"keywords":[{"id":"d2077832-99a8-48d2-b5f8-11e4819c3f57","keyword":"生物镁合金","originalKeyword":"生物镁合金"},{"id":"3ac98116-e048-42fa-b3b6-4ce4b9c1ac33","keyword":"反向热挤压","originalKeyword":"反向热挤压"},{"id":"a4fe86e7-b6d7-48da-9f06-ba2a2726ae76","keyword":"孪晶","originalKeyword":"孪晶"},{"id":"49898b1e-7b6f-4ee5-9289-3b340c740e7f","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"ysjs201702001","title":"Zn、Ag对热挤压单相生物镁合金组织和力学性能的影响","volume":"7","year":"2017"},{"abstractinfo":"镁及镁合金作为可降解吸收生物医用材料的研究已得到关注,但与传统可降解材料相比其腐蚀降解较快,可能导致提前失效.以高纯的Mg-Zn合金为研究材料,采用浸涂提拉法在其表面得到PLGA涂层.结果表明,PLGA涂层致密均匀,耐蚀性好,降解周期长,可以有效保护镁合金在植入初期不发生腐蚀降解,延长其发挥功能的时间,达到良好的医学适用性.","authors":[{"authorName":"赵常利","id":"7f73fdad-7d30-4f81-9e0f-8c6ac511697b","originalAuthorName":"赵常利"},{"authorName":"张绍翔","id":"4e5ff20d-4ec7-4538-9172-27ba927ae406","originalAuthorName":"张绍翔"},{"authorName":"何慈晖","id":"750572fb-bed2-4b84-a234-7c07ed90df9e","originalAuthorName":"何慈晖"},{"authorName":"李佳楠","id":"c14326da-a3b2-4b36-8e25-aaebce6f9109","originalAuthorName":"李佳楠"},{"authorName":"张蓓蕾","id":"d3fd0541-b900-462c-9255-9aef82a90c95","originalAuthorName":"张蓓蕾"},{"authorName":"张小农","id":"9ca31a1f-e382-4f91-8be2-f22ed4f9cf67","originalAuthorName":"张小农"}],"doi":"","fpage":"987","id":"40388964-e760-488e-950c-1cfa60b36d67","issue":"6","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"e9a27a92-cf1b-4673-97bb-f2e8d10ad206","keyword":"生物镁合金","originalKeyword":"生物镁合金"},{"id":"275c89ca-2149-4d83-8d8f-967d3c461a32","keyword":"PLGA涂层","originalKeyword":"PLGA涂层"},{"id":"1e0ca716-0bff-4e47-b79e-84c51275a88d","keyword":"腐蚀降解","originalKeyword":"腐蚀降解"}],"language":"zh","publisherId":"gncl200806031","title":"生物医用镁合金表面PLGA涂层研究","volume":"39","year":"2008"},{"abstractinfo":"通过对具有高屈强比的生物镁合金Mg-2.98Nd-0.34Zn-0.46Zr(NZ30K)进行退火与时效处理,研究了退火与时效处理后合金的显微组织、室温力学和腐蚀性能.结果表明,退火与时效处理后粗大的被拉长的晶粒被消除,随退火温度提高,晶粒逐渐粗大,屈服强度降低,而抗拉强度仍保持较高值.试验研究的5种状态合金的屈强比分别为0.98、0.82、0.71、0.60和0.55;在模拟体液中,与挤压时效态合金的腐蚀性能相比,随退火温度升高,退火与时效处理后合金的腐蚀速率先减慢后加快,且为均匀腐蚀.适宜的热处理工艺有效降低合金屈强比,同时稍微提高合金的耐蚀性能.","authors":[{"authorName":"章晓波","id":"68749b02-0068-46be-b828-84f4e771198b","originalAuthorName":"章晓波"},{"authorName":"薛亚军","id":"04296322-e11e-4077-8b14-b35c20d61b2f","originalAuthorName":"薛亚军"},{"authorName":"王章忠","id":"bc762e56-1719-45c4-9e53-8f8f077af937","originalAuthorName":"王章忠"},{"authorName":"袁广银","id":"af5e621b-6e7a-4ec8-a7a1-748266a208c0","originalAuthorName":"袁广银"},{"authorName":"马欣宇","id":"7d3a92a1-c5f2-473a-942c-8f07fbe69e9e","originalAuthorName":"马欣宇"}],"doi":"","fpage":"20","id":"5fb40395-0099-47b9-86f0-6607de755a5c","issue":"8","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"daafb3dc-4244-40e3-b693-19b780102bbf","keyword":"生物镁合金","originalKeyword":"生物镁合金"},{"id":"6ff374f0-9be1-4f51-9ca2-12addd030d70","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"0aa8e63c-d05e-4d40-9b8c-730f5c105120","keyword":"屈强比","originalKeyword":"屈强比"},{"id":"473d5240-9ae5-4ee7-96fa-7e49899a0f84","keyword":"腐蚀性能","originalKeyword":"腐蚀性能"}],"language":"zh","publisherId":"jsrclxb201308005","title":"热处理对NZ30K生物镁合金力学和腐蚀性能的影响","volume":"34","year":"2013"},{"abstractinfo":"利用光学显微镜、扫描电子显微镜、拉伸试验机等研究了二次挤压对一次挤压的Mg-Nd-Zn-Zr生物镁合金显微组织和力学性能的影响.结果表明,在不同挤压条件下经一次挤压的Mg-Nd-Zn-Zr镁合金组织不均匀,由粗大的被拉长晶粒和细小的再结晶晶粒组成;经过二次挤压后,被拉长的晶粒基本消除,晶粒细小均匀.室温力学性能测试结果表明,当一次挤压工艺不是优化工艺时,二次挤压可明显提高合金的强度和伸长率;当一次挤压工艺为优化后的工艺时,二次挤压使合金强度稍有降低,但伸长率大幅提高.一次挤压合金的断裂方式为河流状解理断裂和韧窝状韧性断裂的混合断裂,而二次挤压合金的断裂方式为韧窝状韧性断裂.","authors":[{"authorName":"章晓波","id":"cc0e9d53-3aeb-4364-8386-a42b60740b24","originalAuthorName":"章晓波"},{"authorName":"王章忠","id":"29a9dbec-dcaf-4e3d-ab5c-338e59f217ab","originalAuthorName":"王章忠"},{"authorName":"袁广银","id":"b11184bc-fb8a-4b45-9ad3-814f873b6ea5","originalAuthorName":"袁广银"}],"doi":"","fpage":"103","id":"33bdf0a8-07d6-409d-9c3d-bf988907fcd5","issue":"2","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"5d0c290a-9a23-4be0-8153-bea140938b3b","keyword":"生物镁合金","originalKeyword":"生物镁合金"},{"id":"f4bb4323-379b-4180-80ad-fc0d33a408e8","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"15d4f2a0-af83-418e-9875-97fed23aac9f","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"10f02850-9730-4ed3-b36a-90f7a9cbd51f","keyword":"二次挤压","originalKeyword":"二次挤压"}],"language":"zh","publisherId":"jsrclxb201302021","title":"二次挤压对Mg-Nd-Zn-Zr生物镁合金组织与性能的影响","volume":"34","year":"2013"},{"abstractinfo":"通过合金的制备,微观组织的观察以及力学性能的测试,研究了固溶温度以及固溶时间对医用生物镁合金Mg-3Zn-1Y-0.6Zr-0.5Ca组织和性能的影响,选择出最佳的热处理工艺.结果表明:提高固溶温度和延长保温时间都能够使第二相溶质原子充分溶进镁基体,增大固溶度,从而提高合金的抗拉强度,但会使合金的塑性下降.本实验合金经过460℃固溶24 h后,抗拉强度达到210 MPa,伸长率达到11.7%,大大提高了铸态生物镁合金的力学性能.","authors":[{"authorName":"张文鑫","id":"4662adac-22ad-43d4-91b2-b46e909fc0da","originalAuthorName":"张文鑫"},{"authorName":"孙毅","id":"3b651e3a-c3a4-461a-947b-b54624dcc095","originalAuthorName":"孙毅"},{"authorName":"许春香","id":"2e186c34-74bf-46b1-8581-1e2e7b5dc2b4","originalAuthorName":"许春香"},{"authorName":"张金山","id":"e6b9d7d8-ec64-4326-af91-4d1e2790fa6e","originalAuthorName":"张金山"},{"authorName":"韩少兵","id":"07b7399d-e045-4aa0-bbd0-1611827a9925","originalAuthorName":"韩少兵"}],"doi":"10.13289/j.issn.1009-6264.2016-X349","fpage":"61","id":"ab86407f-287f-44e9-b48a-e7e8ca7c0c7f","issue":"6","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"d4e9b852-c810-4783-a981-2d9919edfa3e","keyword":"生物镁合金","originalKeyword":"生物镁合金"},{"id":"5330946f-6393-4538-8894-4f504e196f30","keyword":"固溶处理","originalKeyword":"固溶处理"},{"id":"0b74ea83-4066-4f52-8a2f-08cc6ecc9fb6","keyword":"微观组织","originalKeyword":"微观组织"},{"id":"248a538b-2e19-4814-ae53-a7f1434b19aa","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"jsrclxb201706010","title":"固溶处理对Mg-Zn-Y-Zr-Ca生物镁合金微观组织和力学性能的影响","volume":"38","year":"2017"},{"abstractinfo":"采用重力浇铸法制备了Mg-(4-x)Nd-xGd-0.3 Sr-0.2Zn-0.4Zr(质量分数,%,x=0,1,2,3)4组合金,并对其进行了固溶+人工时效热处理(T6).利用XRD对铸态合金的物相进行分析,采用SEM观察合金的组织,采用拉伸试验机和显微硬度计测试合金的室温拉伸性能和显微硬度,采用失重法评价合金在模拟体液中的腐蚀速率,并对腐蚀形貌进行观察.结果表明,随着Gd部分取代Nd,铸态合金的组织先细化后又变粗,第二相含量逐渐减少,室温力学性能和耐蚀性能均提高.而对于T6态合金,强度和硬度均比不含Gd的合金要低,耐蚀性能则优于不含Gd的合金.","authors":[{"authorName":"章晓波","id":"d88b4a5c-2ec9-46f6-a2d3-2d75166e7542","originalAuthorName":"章晓波"},{"authorName":"薛亚军","id":"ec54634a-2430-49bd-b65f-8127dff7e31f","originalAuthorName":"薛亚军"},{"authorName":"王章忠","id":"19da1055-8cbe-4960-b6a3-6362fe8e96f8","originalAuthorName":"王章忠"},{"authorName":"贺显聪","id":"b4a6407b-7d6d-4315-b360-35d4aa50757a","originalAuthorName":"贺显聪"},{"authorName":"王强","id":"7f7024bd-1eb5-4d9c-968a-ef280cb9e098","originalAuthorName":"王强"}],"doi":"10.11900/0412.1961.2013.00769","fpage":"979","id":"75f29439-f41a-4256-82ee-fe330c98502e","issue":"8","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"3c3de4a1-35b8-4490-bbc5-59195be6c36d","keyword":"生物镁合金","originalKeyword":"生物镁合金"},{"id":"2cc26bfb-a9a9-4f59-a0b3-734286b0452d","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"9a1ec69c-7f1e-4256-a70a-5b75b759762e","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"2e8ce605-f718-4c19-adbc-629b7143c4be","keyword":"腐蚀性能","originalKeyword":"腐蚀性能"}],"language":"zh","publisherId":"jsxb201408011","title":"Mg-(4-x)Nd-xGd-Sr-Zn-Zr生物镁合金的组织、力学和腐蚀性能","volume":"50","year":"2014"},{"abstractinfo":"研究了不同Ce含量对Mg-2Zn-0.4Zr-xCe生物镁合金组织及耐蚀性的影响.通过拉伸试验、电化学测试、SEM分析等手段对合金的力学性能、耐蚀性及显微组织进行了研究.结果表明:当Ce含量在低于1 mass%的范围内,随着Ce含量的增加,第二相沿着晶界析出并且逐渐增多,晶粒细化,力学性能和耐蚀性逐渐提高;Ce含量为0.6 mass%时,合金的力学性能与耐蚀性较佳,抗拉强度约为140.13 MPa,伸长率约为9.47%,腐蚀速率约为0.776 mg·cm-2·d-1;当Ce含量大于0.6 mass%时,腐蚀速率有增大的趋势,力学性能变化不明显.","authors":[{"authorName":"雷少帆","id":"37bfbb63-9691-4471-8cae-efc827741210","originalAuthorName":"雷少帆"},{"authorName":"文九巴","id":"ec7e262a-714d-487b-a090-afb293b89a16","originalAuthorName":"文九巴"},{"authorName":"姚怀","id":"3e55d322-b462-4f1d-988d-230fbdd82a8e","originalAuthorName":"姚怀"},{"authorName":"贺俊光","id":"2f0bee47-e834-4499-9ea4-e1072188d751","originalAuthorName":"贺俊光"},{"authorName":"刘亚","id":"dff61553-6e10-45a6-a7ab-aa25cc3f5a5a","originalAuthorName":"刘亚"}],"doi":"","fpage":"96","id":"b20c0766-aa6f-4e9f-89de-b2483727aabe","issue":"10","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"4a214879-8d4e-4ce3-b1d9-88f8986dc2a5","keyword":"生物镁合金","originalKeyword":"生物镁合金"},{"id":"4eaa6aa6-0935-4725-8eb2-69e6cc222807","keyword":"稀土Ce","originalKeyword":"稀土Ce"},{"id":"abde2466-e0c3-40ec-b122-332565a311e7","keyword":"耐蚀性","originalKeyword":"耐蚀性"}],"language":"zh","publisherId":"jsrclxb201610018","title":"Ce含量对Mg-2Zn-0.4Zr-xCe生物镁合金组织及耐蚀性的影响","volume":"37","year":"2016"}],"totalpage":4462,"totalrecord":44614}