{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"目的 通过电沉积方法在镁锂合金表面制备具有高红外发射率以及高导电率的镀层,满足其在太空中散热以及电磁屏蔽的需要.方法 通过前处理工艺(碱洗→酸洗→预钝化→化学镀镍磷→电镀铜)提高镁锂合金基体的耐蚀性能以及与后续镀层的结合力,并在此镁锂合金前处理工艺的条件下,电沉积多孔Zn-Ni合金镀层.通过热循环测试和电化学方法评价各镀层的电化学腐蚀行为和各镀层之间的结合力.结果 各镀层之间的结合力良好,化学镀Ni-P层、电镀Cu层和多孔Zn-Ni层的耐蚀性能均优于镁锂合金基体,该组合镀层的协同作用可以有效地保护镁锂合金基体,提高其耐蚀性.结论 最外层多孔Zn-Ni合金镀层主要由Ni2Zn11、NiO、NiS组成,其红外发射率为0.90,电阻率小于0.01 mΩ/cm.这表明多孔结构可以有效提高金属合金镀层的红外发射率,并保持合金镀层的高导电性.","authors":[{"authorName":"郭嘉成","id":"73311a70-a3bd-43e5-8bfa-f350f32ba6a8","originalAuthorName":"郭嘉成"},{"authorName":"徐文彬","id":"651b1f81-2d4a-4aef-afbf-a19159e950a0","originalAuthorName":"徐文彬"},{"authorName":"章志铖","id":"77673418-e855-48a7-a00c-eb87c8f88cd9","originalAuthorName":"章志铖"},{"authorName":"聂乐文","id":"ed8229e3-6746-4d73-ba86-f0bce814d263","originalAuthorName":"聂乐文"},{"authorName":"弓磊超","id":"425c108c-95cf-48df-9c02-d9204849b905","originalAuthorName":"弓磊超"},{"authorName":"董杰","id":"f1fa3eab-b150-4fcb-9537-d21a79c9bc85","originalAuthorName":"董杰"},{"authorName":"郭兴伍","id":"12de086a-0cb3-4e72-be8f-0c60d98929d6","originalAuthorName":"郭兴伍"},{"authorName":"丁文江","id":"75fdfa28-cf9d-440d-8028-014ea271ee0f","originalAuthorName":"丁文江"}],"doi":"10.16490/j.cnki.issn.1001-3660.2017.03.007","fpage":"47","id":"c4e69ff2-b1da-4bf7-9bb6-26c317cfbb41","issue":"3","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"24e12567-8495-4777-84ac-a39d95135f0e","keyword":"镁锂合金","originalKeyword":"镁锂合金"},{"id":"7d2e4488-e339-4df8-8ca4-4e7dfc2f1d55","keyword":"多孔Zn-Ni层","originalKeyword":"多孔Zn-Ni层"},{"id":"109e91dd-e0aa-4e93-a85a-7266f7a6cd26","keyword":"耐蚀性","originalKeyword":"耐蚀性"},{"id":"237119ff-d7d7-4034-8fd1-cb4efec2f77d","keyword":"红外发射率","originalKeyword":"红外发射率"},{"id":"ffd128b8-c876-4a83-b678-7e1bf59b6173","keyword":"导电率","originalKeyword":"导电率"}],"language":"zh","publisherId":"bmjs201703008","title":"镁合金表面制备高红外发射率和高导电率热控膜层","volume":"46","year":"2017"},{"abstractinfo":"对镁合金材料近年来在表面微弧氧化、表面超疏水膜层、激光表面改性以及溶胶-凝胶涂层四个方面的研究动态进行了简要综述.镁合金材料采用双极性和混合(单极和双极的组合)电流模式微弧氧化处理的膜层生长速率较快,膜层更致密且硬度更高,膜层的耐磨性和耐腐蚀性能更好.在高浓度苛性碱为主的强碱性溶液中添加适量的添加剂,经短时间(~3 min)微弧氧化处理,即可获得中性盐雾试验达200 h以上的致密耐腐蚀膜层.采用水热法、电化学刻蚀、微弧氧化和电沉积等方法,可在镁合金材料表面形成具有微纳米多级结构的粗糙表面,再用低表面能物质对粗糙表面进行修饰,可在镁合金表面获得超疏水膜层,从而提高镁合金的耐腐蚀性能.镁合金材料激光表面改性处理可改善其表面成分,细化晶粒,使组成相分布更均匀以及提高表层的固溶度极限,从而提高镁合金材料的耐腐性能、摩擦磨损抗力和疲劳强度.溶胶-凝胶有机/无机杂化涂层与镁合金基材良好的附着力,不仅可提高镁合金的耐腐蚀性能,还可以使镁合金具有抗氧化、耐磨损、防水性以及其他性能.","authors":[{"authorName":"郭兴伍","id":"b465da23-1508-43f0-be4c-aec19f247489","originalAuthorName":"郭兴伍"},{"authorName":"郭嘉成","id":"e79cea00-5789-4f96-a184-e0473f850596","originalAuthorName":"郭嘉成"},{"authorName":"章志铖","id":"a2e02c5f-c6ea-4f22-9d50-033a90c2bc4c","originalAuthorName":"章志铖"},{"authorName":"徐文彬","id":"3e06afd6-02cc-4337-82f5-5573fc723a8c","originalAuthorName":"徐文彬"},{"authorName":"聂乐文","id":"c5069697-89b6-4af5-8a9d-51909eb53d69","originalAuthorName":"聂乐文"},{"authorName":"弓磊超","id":"d006d883-5030-48f3-bdab-4776bae66aee","originalAuthorName":"弓磊超"},{"authorName":"彭立明","id":"5473d294-70e1-4237-a303-55407ae633a1","originalAuthorName":"彭立明"},{"authorName":"丁文江","id":"c223123a-f3a5-44f1-a73f-c710f0a83451","originalAuthorName":"丁文江"}],"doi":"10.16490/j.cnki.issn.1001-3660.2017.03.008","fpage":"53","id":"4031a83c-c5fe-4023-9e47-7344a4719832","issue":"3","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"f1fbf292-7301-4b2d-8fdc-03ebd49a6a4f","keyword":"镁合金","originalKeyword":"镁合金"},{"id":"4a850739-f4f2-4951-be95-0884bf9be1bf","keyword":"超疏水","originalKeyword":"超疏水"},{"id":"d565805e-2fe3-478a-8ad6-f57d100ffb0b","keyword":"微弧氧化","originalKeyword":"微弧氧化"},{"id":"bdf45f52-e7d3-40b0-aa0e-bce40cfa3fe4","keyword":"激光表面改性","originalKeyword":"激光表面改性"},{"id":"b42933e8-505e-4993-93ae-2d9a1660b343","keyword":"溶胶-凝胶涂层","originalKeyword":"溶胶-凝胶涂层"},{"id":"87edb409-46c9-4d08-be9d-4b951e853e5f","keyword":"腐蚀防护","originalKeyword":"腐蚀防护"}],"language":"zh","publisherId":"bmjs201703009","title":"镁合金材料表面处理技术研究新动态","volume":"46","year":"2017"},{"abstractinfo":"目的 提高AZ91D镁合金的耐腐蚀性能.方法 通过电沉积方法在氯化胆碱-尿素离子液体中于镁合金表面电沉积Ni-Mn合金膜层.经过均一化前处理,在镁合金表面电沉积铜层,以提高后续Ni-Mn合金膜层与基体的结合力.利用扫描电镜(SEM)、能谱仪(EDS)、x射线衍射仪(XRD)研究了Mn元素对膜层微观形貌、成分和相结构的影响,并通过电化学方法评价了镀层的电化学腐蚀行为.结果 引入Mn元素后,膜层表面微观形貌从锥状演变为肿瘤状,且Ni-Mn合金膜层的Mn含量取决于电流密度,其含量随着电流密度的增加而增加.与纯Ni膜相比,引入少量Mn元素可以提高其耐腐蚀性能,然而引入过多的Mn元素,膜层的耐腐蚀性能将弱于纯Ni膜.结论 当电沉积Ni-Mn膜层含有3.078%(原子数分数)Mn时,具有最佳的耐腐蚀性能,其自腐蚀电流密度上Jcorr=0.301 μA/cm2,自腐蚀电位Ecorr=-0.157 V(vs.SCE).","authors":[{"authorName":"章志铖","id":"7ed77c9e-c48a-4609-8fe9-20eb0b679ab9","originalAuthorName":"章志铖"},{"authorName":"郭嘉成","id":"706b1119-4bfb-41af-b191-3d9fdb5892d0","originalAuthorName":"郭嘉成"},{"authorName":"徐文彬","id":"6971f95e-4665-453a-a3f2-0dc0767f3b50","originalAuthorName":"徐文彬"},{"authorName":"聂乐文","id":"2b46c7d9-2823-4e64-9cd7-a4f304d354c7","originalAuthorName":"聂乐文"},{"authorName":"弓磊超","id":"1823db11-d8af-4c9d-b82e-5bc805b2968b","originalAuthorName":"弓磊超"},{"authorName":"郭兴伍","id":"83e640b3-9851-4fc7-9d02-dd254325919b","originalAuthorName":"郭兴伍"},{"authorName":"丁文江","id":"f000528a-5877-420b-87e8-5e129dcdba7d","originalAuthorName":"丁文江"}],"doi":"10.16490/j.cnki.issn.1001-3660.2017.03.009","fpage":"66","id":"45e12137-7402-468e-9101-d26596abfaeb","issue":"3","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"680c8b19-b20e-400c-9edf-90e53a9e0f9d","keyword":"镁合金","originalKeyword":"镁合金"},{"id":"6aa1dc8d-ccae-4299-960c-793bce4978e5","keyword":"离子液体","originalKeyword":"离子液体"},{"id":"e091489a-2eb2-449b-b667-848a9dbd8160","keyword":"Ni-Mn合金膜","originalKeyword":"Ni-Mn合金膜"},{"id":"bedf9449-1953-4c86-bf65-b27a53277f65","keyword":"微观形貌","originalKeyword":"微观形貌"},{"id":"db41bcb9-b245-4153-8aeb-9e0820b26468","keyword":"腐蚀防护","originalKeyword":"腐蚀防护"}],"language":"zh","publisherId":"bmjs201703010","title":"室温离子液体中电沉积高耐蚀性Ni-Mn薄膜","volume":"46","year":"2017"},{"abstractinfo":"在前期工作基础上,研究了不同反应气体组合条件下SiQ_xN_y栅介质薄膜的反应溅射制备.反应气体的不同组合首先导致薄膜氮氧比以及沉积速率的不同,并进一步导致薄膜电学性能的差异.对薄膜电容-电压特性的分析表明,沉积速率降低会使薄膜体缺陷密度减小,而氮含量的减少则有助于提高薄膜界面质量.最终结果显示,采用合适的反应气体组合(QN_2=1.0sccm,Qo_2=1.0sccm)制得的SiOxNy薄膜具有较低的体缺陷密度和较好的界面质量,适合于MOS栅介质领域的应用.","authors":[{"authorName":"徐文彬","id":"a934e3fd-c8fb-4e7e-b9d2-0e1d7e4738f8","originalAuthorName":"徐文彬"},{"authorName":"王德苗","id":"06c9ff4f-1688-4cff-a553-4905bcd8fa36","originalAuthorName":"王德苗"}],"doi":"","fpage":"11","id":"4181330a-340c-48a3-9e16-33e723e09a55","issue":"20","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"a1205fc8-2c26-4d6c-af1e-de712e29c2bd","keyword":"氯氧化硅","originalKeyword":"氯氧化硅"},{"id":"c5745901-37d4-4c23-9770-075216bbe4d1","keyword":"氯氧比","originalKeyword":"氯氧比"},{"id":"519ced69-bf82-4262-8732-8c87b750f70d","keyword":"C-V特性","originalKeyword":"C-V特性"},{"id":"b670ed57-edff-4fb2-b040-4c6ff67ca71f","keyword":"栅介质","originalKeyword":"栅介质"}],"language":"zh","publisherId":"cldb200920004","title":"反应溅射SiO_xN_y栅介质薄膜的成分及C-V特性研究","volume":"23","year":"2009"},{"abstractinfo":"纳米二氧化硅在各行业中有着广泛的应用,是重要的无机粉体材料.本文简述了纳米二氧化硅的性质与应用,综述了纳米二氧化硅的制备工艺及其研究进展,评述了各工艺的特点,并对制备技术的发展进行了展望.","authors":[{"authorName":"何奕锋","id":"06e3d27d-1e8a-4aec-ac04-02286d859b77","originalAuthorName":"何奕锋"},{"authorName":"徐文彬","id":"5daf1aa5-504f-4cdd-9e29-613dd61e7701","originalAuthorName":"徐文彬"},{"authorName":"宾丽英","id":"8f574667-f24e-42d9-919f-c7b76a1425fb","originalAuthorName":"宾丽英"},{"authorName":"罗彬源","id":"790d28f5-ed36-4fa9-bf4c-e631470bd432","originalAuthorName":"罗彬源"},{"authorName":"黎俞娟","id":"2e79ba60-ee22-4a6b-9960-22af6ae14703","originalAuthorName":"黎俞娟"},{"authorName":"萧婉莹","id":"7d9c08ab-55e6-4daf-8096-db8a4952df3d","originalAuthorName":"萧婉莹"}],"doi":"10.3969/j.issn.1003-1545.2008.05.019","fpage":"81","id":"7ff674b4-0487-4467-88dd-490c8b6f315f","issue":"5","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"88a73e64-5dd8-4765-9980-18237e6ca123","keyword":"纳米二氧化硅","originalKeyword":"纳米二氧化硅"},{"id":"f3b81a76-dc74-41fa-9e1c-1f39870b0880","keyword":"制备","originalKeyword":"制备"},{"id":"ba8fdcf9-818b-4443-b07c-fd21c67664a7","keyword":"进展","originalKeyword":"进展"}],"language":"zh","publisherId":"clkfyyy200805019","title":"纳米二氧化硅粉体的制备研究进展","volume":"23","year":"2008"},{"abstractinfo":"基于复合材料液态模塑(LCM)工艺过程中存在半饱和区域的实验现象以及对预制体双尺度效应的逐步认识,一些学者提出用沉浸模型来研究双尺度多孔介质的不饱和流动。通过体积均匀化方法描述了双尺度多孔介质复合材料液态模塑工艺模型的特征,得到含有沉浸项的双尺度多孔介质的质量守恒方程,并采用有限元法对方程进行数值求解,通过具体算例计算了考虑双尺度效应时恒压树脂注射下不同时段的压力分布状态,得到树脂在填充过程中流动前沿半饱和区域从出现到消失的过程,采用不同注射压力进行模拟并比较。结果表明,与单尺度多孔介质模型不同,双尺度多孔介质模型更能反映实际树脂填充过程中出现的半饱和区域现象。","authors":[{"authorName":"陈晓江","id":"febeed05-2efb-49ee-b370-00d93b8c3c29","originalAuthorName":"陈晓江"},{"authorName":"徐文彬","id":"3b741d1f-317c-416b-9a03-704d5d7814ac","originalAuthorName":"徐文彬"},{"authorName":"晏石林","id":"fa53b529-dd2b-4f8f-9be3-7e4cc56113f0","originalAuthorName":"晏石林"},{"authorName":"李翠峰","id":"a5d2d7f8-b555-41fa-a18a-f31e3c2ef00b","originalAuthorName":"李翠峰"}],"doi":"","fpage":"63","id":"d6d7fb60-5fd6-4f6d-845d-317c456edeb0","issue":"4","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"35e008ad-572a-4e72-a63f-1e998ab99536","keyword":"双尺度多孔介质","originalKeyword":"双尺度多孔介质"},{"id":"69c66cc0-e33d-4c76-a774-a4cbf8a8e409","keyword":"沉浸项","originalKeyword":"沉浸项"},{"id":"e4dc903b-2190-4308-9525-2c1f617c1813","keyword":"压力分布","originalKeyword":"压力分布"},{"id":"071dcd64-4afb-40ca-b288-2d06cd913adc","keyword":"非线性","originalKeyword":"非线性"},{"id":"f0e552ea-dd75-4982-9b3a-39c73b7fe626","keyword":"均匀化","originalKeyword":"均匀化"}],"language":"zh","publisherId":"fhclxb201204011","title":"恒压下树脂在双尺度多孔介质中的流动特性","volume":"29","year":"2012"},{"abstractinfo":"简要综述了铁电薄膜在铁电存储器、MEMS系统、微波器件、光电器件等几个方面的典型应用,并对国内铁电薄膜的研究及发展作了概述.","authors":[{"authorName":"徐文彬","id":"a914d53c-1954-4608-8d0a-d64105d3d740","originalAuthorName":"徐文彬"},{"authorName":"王德苗","id":"9b2e081e-849d-4e00-ac41-caec3b758048","originalAuthorName":"王德苗"},{"authorName":"董树荣","id":"04c76ed2-8de9-415f-b119-a87015184b5f","originalAuthorName":"董树荣"}],"doi":"","fpage":"73","id":"855d8a70-2124-401b-a896-84eef9eede7f","issue":"10","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"25562c09-3b62-48a0-a59b-adfa6c62ef75","keyword":"铁电薄膜","originalKeyword":"铁电薄膜"},{"id":"5a80d08f-c531-463e-b41f-4229324ac6ca","keyword":"铁电存储器","originalKeyword":"铁电存储器"},{"id":"d38dada8-3518-4e32-bdf9-3a1aa06d5786","keyword":"MEMS","originalKeyword":"MEMS"}],"language":"zh","publisherId":"cldb200410021","title":"铁电薄膜应用研究进展","volume":"18","year":"2004"},{"abstractinfo":"单轴、双轴和三轴徐变试验结果表明,混凝土的徐变与弹性变形一样具有空间特性,但根据单轴徐变试验得到的徐变系数、徐变泊松比以及采用叠加原理计算的双轴、三轴应力状态下的空间徐变与实际情况存在较大偏差.为了准确计算不同应力状态下混凝土的空间徐变,介绍了应力组合对有效徐变泊松比的影响和基于有效徐变泊松比的空间徐变计算方法.另外,根据应力张量的弹性力学意义,引入了球应力徐变系数(ψ)m和偏应力徐变系数(ψ) d,提出了基于这两个徐变系数的空间徐变计算统一表达式,可计算混凝土在单轴、双轴和三轴等不同应力状态下的空间徐变.","authors":[{"authorName":"黄胜前","id":"f60fe1e8-6699-466b-8f2e-355e391d0c51","originalAuthorName":"黄胜前"},{"authorName":"杨永清","id":"0ad9d4be-4c12-4497-a380-8dee2c8f7ad4","originalAuthorName":"杨永清"},{"authorName":"李晓斌","id":"a5e2e801-c9b9-4f4b-886e-c62ae3c23491","originalAuthorName":"李晓斌"},{"authorName":"陈志伟","id":"db16b3f8-4c53-49d7-bdd3-f6cf5f2247c1","originalAuthorName":"陈志伟"}],"doi":"","fpage":"150","id":"77593762-6ffb-4cfa-913f-f64ffef2186c","issue":"2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"69ea1570-d4c9-437e-bfef-97ae77a244a5","keyword":"混凝土","originalKeyword":"混凝土"},{"id":"9785e9c9-1fc1-4ea3-ab52-a37f97e3f32e","keyword":"单轴","originalKeyword":"单轴"},{"id":"4565bb1b-db4a-4cd3-8595-f4cc47900c42","keyword":"双轴","originalKeyword":"双轴"},{"id":"59877901-b9f9-4bd2-a23d-bca130502b51","keyword":"三轴","originalKeyword":"三轴"},{"id":"375cdb53-1ae1-4106-b024-cece1bb5b8eb","keyword":"应力状态","originalKeyword":"应力状态"},{"id":"2edbc816-e655-4662-9602-f0529134d608","keyword":"空间徐变","originalKeyword":"空间徐变"}],"language":"zh","publisherId":"cldb201302040","title":"不同应力状态下混凝土空间徐变的统一表达式","volume":"27","year":"2013"},{"abstractinfo":"为了研究不同配合比设计方法对再生混凝土长期徐变性能的影响,分别采用等体积砂浆法(EMV法)与传统替代法配制再生混凝土,测试各组再生混凝土试件28 d龄期后自然条件下持荷的变形值和相同试验条件下试件的收缩值,并计算各组试件的徐变度.研究结果表明:两种方法配制的再生混凝土的收缩徐变变化规律与对比普通混凝土相似.EMV法可有效改善再生混凝土的徐变性能,具有较低的徐变度.","authors":[{"authorName":"霍俊芳","id":"55188923-049c-49aa-994c-ac564398860f","originalAuthorName":"霍俊芳"},{"authorName":"李晨霞","id":"8fa10b03-f76b-44b4-97ee-bd67d36d407e","originalAuthorName":"李晨霞"},{"authorName":"侯永利","id":"83d612b7-ba2c-46d3-a2ff-d86f396b5f77","originalAuthorName":"侯永利"},{"authorName":"吕笑岩","id":"98dd9616-8bca-4990-9631-ef1c189dce52","originalAuthorName":"吕笑岩"}],"doi":"","fpage":"723","id":"dc2db04e-0a0c-4741-830f-d84f7a4e5aee","issue":"2","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"d2a7136a-24da-4dc5-b2c8-c753ce344b72","keyword":"再生混凝土","originalKeyword":"再生混凝土"},{"id":"46b36702-7dae-4dad-b1c2-1996ae105250","keyword":"配合比","originalKeyword":"配合比"},{"id":"69440820-bb2f-4272-abe2-bdc4edbd2d6e","keyword":"徐变","originalKeyword":"徐变"}],"language":"zh","publisherId":"gsytb201702054","title":"再生粗骨料混凝土收缩徐变性能试验","volume":"36","year":"2017"},{"abstractinfo":"本文阐述了FRP应力松弛、徐变性能的研究意义,总结了国内外关于应力松弛、徐变性能的最新研究成果及主要影响因素,并探讨了应力松弛和徐变的计算模型,对未来FRP长期性能研究的发展方向做出了展望.","authors":[{"authorName":"李建辉","id":"0f7148fe-f8bb-4e01-9827-43b6d6088f0a","originalAuthorName":"李建辉"},{"authorName":"邓宗才","id":"734ba4b3-500c-4ca4-adda-8e3a09ca07b3","originalAuthorName":"邓宗才"}],"doi":"10.3969/j.issn.1003-0999.2007.03.016","fpage":"56","id":"59ffbb46-47b1-40d6-8ec4-254b9f0174de","issue":"3","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"3192da00-b6fe-4a92-a3fe-eec5f9cca17e","keyword":"FRP","originalKeyword":"FRP"},{"id":"812f44d9-8adc-47b7-95e7-d14c2fe8670d","keyword":"应力松弛","originalKeyword":"应力松弛"},{"id":"37e0f5f2-7caa-403e-96f9-d45fa60555ee","keyword":"徐变","originalKeyword":"徐变"},{"id":"290bc541-6726-480e-a116-34147a7cb2ae","keyword":"前景展望","originalKeyword":"前景展望"}],"language":"zh","publisherId":"blgfhcl200703016","title":"FRP应力松弛及徐变性能的研究近展","volume":"","year":"2007"}],"totalpage":22,"totalrecord":213}