欢迎登录材料期刊网

材料期刊网

高级检索

  • 论文(2)
  • 图书()
  • 专利()
  • 新闻()

神经网络在高炉铁水硫含量预报中的应用

王炜 , 陈畏林 , 叶勇 , 徐智慧 , 贾斌

钢铁

采用3层BP神经网络来预报高炉铁水硫含量,根据高炉冶炼的实际生产数据,选取风温、风量、炉顶温度、焦炭负荷、喷煤量、矿石硫含量、焦炭硫含量、煤粉硫含量和上一炉铁水硅含量9个因素作为输入变量,为提高神经网络预报的准确率,对输入参数进行时滞处理.采取附加动量项和自适应学习步长的措施,解决了BP神经网络局部收敛和学习时间过长的问题.模型预报结果表明:当允许绝对误差不大于0.001时,预报命中率为70.7%;当允许绝对误差不大于0.005时,命中率为90%,证明了模型的有效性.

关键词: 硫含量 , 预报 , 神经网络 , 高炉

神经网络在高炉铁水硫含量预报中的应用

王炜 , 陈畏林 , 叶勇 , 徐智慧 , 贾斌

钢铁

采用3层BP神经网络来预报高炉铁水硫含量,根据高炉冶炼的实际生产数据,选取风温、风量、炉顶温度、焦炭负荷、喷煤量、矿石硫含量、焦炭硫含量、煤粉硫含量和上一炉铁水硅含量9个因素作为输入变量,为提高神经网络预报的准确率,对输入参数进行时滞处理。采取附加动量项和自适应学习步长的措施,解决了BP神经网络局部收敛和学习时间过长的问题。模型预报结果表明:当允许绝对误差不大于0.001时,预报命中率为70.7%;当允许绝对误差不大于0.005时,命中率为90%,证明了模型的有效性。

关键词: 硫含量;预报;神经网络;高炉

出版年份

刊物分类

相关作者

相关热词