徐颖超
,
徐筑君
,
常晓杰
,
刘畅
环境化学
doi:10.7524/j.issn.0254-6108.2015.10.2015052805
本文将聚乙烯醇( PVA)分别与添加剂碳酸钙( CaCO3)、活性炭( AC)、二氧化硅( SiO2)以及海藻酸钠(SA)掺杂,并对大肠杆菌(E. coli)进行包埋,形成4种PVA包埋细菌复合胶体颗粒.同时,采用以铁氰化钾为探针的电化学方法监测被包埋菌体的活性变化,进而对各复合颗粒中的添加剂含量进行择优筛选.在最优条件下,研究各复合颗粒的储藏时间和方式对菌体的活性影响及各种包埋材料的机械稳定性.将筛选出的最优活性下各包埋细菌复合胶体颗粒应用于3,5二氯苯酚(DCP)的毒性检测,其对DCP的灵敏度排序依次为SA>AC>CaCO3>SiO2.因此,以PVA?SA固定微生物的复合胶体颗粒与PVA固定微生物胶体颗粒分别应用于1—5 mg·L-1的乙嘧酚水样的毒性检测,得其抑制率范围分别为6.38%—21.44%和3.21%—16.98%.由此表明,加入添加剂后的PVA固定法对毒物毒性的灵敏度有显著提高,在固定化微生物水质毒性检测领域具有一定的实际应用价值.
关键词:
聚乙烯醇
,
添加剂
,
固定化微生物
,
微生物传感器
,
毒性检测
徐筑君
,
徐颖超
,
常晓杰
,
刘畅
环境化学
doi:10.7524/j.issn.0254-6108.2015.05.2015012609
本文以铁氰化钾为探针,采用电化学方法监测铁氰化钾还原产物的量的变化,进而考察经不同时间、不同浓度的TritonX?100预处理表面的大肠杆菌( E. coli)活性及对毒物毒性灵敏度的变化.同时,结合扫描电镜( SEM)及生长曲线实验考察E. coli形貌及繁殖能力的变化,确定最优预处理条件.电化学分析结果表明, TritonX?100的使用量和作用时间分别为2%和1 h 时, E. coli 因呼吸作用而产生的电信号值最高;随着TritonX?100作用时间的增加,E. coli细胞活性逐渐减弱,当处理时间达到4 h,E. coli的细胞活性甚至低于未处理细胞.SEM结果表明,相对于未处理的细胞,经2% TritonX?100处理1 h时的E. coli的细胞壁通透性增加.此外,E. coli生长曲线实验结果证明,经2% TritonX?100处理1 h后, E. coli亲代细胞的繁殖活性有所下降,但子代的繁殖活性未受明显影响.根据条件优化的结果,经2% TritonX?100处理1 h的E. coli被用于3,5?二氯苯酚( DCP )的毒性检测,作用1 h 后的半数抑制率( IC50)为6.60 mg·L-1.而采用未经处理的 E. coli 与6.60 mg·L-1的DCP作用1 h后产生的抑制率仅为34.4%.同时,优化菌株及对照菌株分别被应用于7份实际水样的毒性检测,其抑制率范围分别为4.37%—5.90%及2.24%—3.69%.可见,经2% TritonX?100预处理1 h的E. coli活性及对毒物毒性灵敏度均有所提高,更加适用于水质毒性检测.
关键词:
表面处理大肠杆菌
,
TritonX-100
,
媒介体
,
毒性
,
微生物传感器