戴前伟
,
江沸菠
中国有色金属学报
粒子群优化算法是一种启发式的全局优化算法,将其与 BP 神经网络结合,能够有效地改善 BP 神经网络在进行电阻率层析反演中的收敛速度和求解质量。提出一种基于混沌振荡的粒子群算法,使用混沌振荡曲线来自适应调整惯性权重w以提高PSO算法的全局寻优能力,并使用其训练和优化BP神经网络的权值和阈值。比较不同隐含层节点数目和惯性权重w值对反演结果的影响,并给出混沌振荡PSO-BP算法非线性反演的具体实现方案。对均匀半空间中异常体理论模型进行反演,实验结果表明:混沌振荡PSO-BP不依赖初始模型,在稳定性和准确性上优于BP反演和标准PSO-BP反演,成像质量优于最小二乘法反演的。
关键词:
电阻率层析成像
,
非线性反演
,
粒子群优化
,
反向传播网络
,
混沌序列