{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"介绍了用SO2还原沉淀,用NaOH浸煮除杂质等工序回收湿法冶炼废水及废水沉淀物中金的过程.该工艺不仅能回收金,还可回收其它有价金属(Cu、Pb),是一种操作简便、易行的方法.","authors":[{"authorName":"刘全宝","id":"949718f0-39fa-46ce-b7dc-55fb175b0dab","originalAuthorName":"刘全宝"},{"authorName":"于辉芝","id":"0fd9dd11-f8ca-43e1-a28c-9294e5e13e0c","originalAuthorName":"于辉芝"}],"doi":"10.3969/j.issn.1001-1277.2002.10.013","fpage":"43","id":"b1d5908f-49fb-4104-b92f-631700fc4976","issue":"10","journal":{"abbrevTitle":"HJ","coverImgSrc":"journal/img/cover/HJ.jpg","id":"44","issnPpub":"1001-1277","publisherId":"HJ","title":"黄金"},"keywords":[{"id":"f8e28b12-31dc-4504-901e-774fd7a286b0","keyword":"SO2还原法","originalKeyword":"SO2还原法"},{"id":"16ae8a52-60e8-4da8-a9f7-ce29bd59ff14","keyword":"湿法冶炼废水","originalKeyword":"湿法冶炼废水"},{"id":"f87d01e6-6f7e-479c-adab-dafbcc7009e4","keyword":"回收金","originalKeyword":"回收金"}],"language":"zh","publisherId":"huangj200210013","title":"从湿法冶炼废水中回收金","volume":"23","year":"2002"},{"abstractinfo":"以煤气为还原剂、Fe为活性金属催化还原冶炼烟气中SO2制取硫磺.研究了不同载体、不同金属含量、稀土Sm及其含量对SO2还原成S单质催化活性的影响.结果表明,载体Al2O3粉末越细,SO2还原反应出的硫温度越低;催化剂中金属Fe的最佳含量(质量分数)为14%,当反应温度为400℃时,硫的产率为81.92%;稀土Sm的加入提高了催化剂的反应活性,当反应温度为360℃时,Sm-Fe/Al2O3的硫产率与Fe/Al2O3相比提高了40.5%.Sm-Fe/Al2O3催化剂的活性与Sm含量存在一定的关系,本试验条件下,稀土Sm的最佳含量(质量分数)为1.0%.","authors":[{"authorName":"邓庚凤","id":"a2d14008-28dd-446c-b004-e579b628a323","originalAuthorName":"邓庚凤"},{"authorName":"曹霞","id":"658609e1-256c-4a5b-b800-3e795ed4953e","originalAuthorName":"曹霞"},{"authorName":"廖春发","id":"e90b1a7b-5cd1-4822-bd3b-4a89df4168eb","originalAuthorName":"廖春发"},{"authorName":"姜坤","id":"ed7eafbc-bee6-47de-9211-4dd2a658b24e","originalAuthorName":"姜坤"},{"authorName":"郭年祥","id":"7d116fff-2023-4892-8b88-f06a7add36b8","originalAuthorName":"郭年祥"},{"authorName":"郭凯","id":"982fd0a7-e15b-44c4-8cde-8dc29d6a18b2","originalAuthorName":"郭凯"}],"doi":"","fpage":"421","id":"78df76a8-531d-4ac5-a1b6-fa65f15a6a15","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"bdf63ad0-87b5-4ef6-b4b3-1b3d7d2f1440","keyword":"SO2","originalKeyword":"SO2"},{"id":"10d0caa1-67f1-419a-871b-5affe8bbe7ae","keyword":"催化还原","originalKeyword":"催化还原"},{"id":"795d0f24-5641-40b1-95fd-8660e4f0b767","keyword":"硫磺","originalKeyword":"硫磺"},{"id":"6d402e84-384e-44a2-b5df-1625b5d8974f","keyword":"烟气","originalKeyword":"烟气"},{"id":"7a0c07a6-d25e-4f16-86f4-09f15ce61d87","keyword":"稀土Sm","originalKeyword":"稀土Sm"}],"language":"zh","publisherId":"cldb2010z1125","title":"烟气中SO2催化还原制取硫磺","volume":"24","year":"2010"},{"abstractinfo":"综合Leeds机理,采用Chemkin程序的PFR模块,以Glarborg实验中的柱塞流反应器作为模拟对象,研究了甲烷再燃还原NO过程中SO2交互作用的影响.利用该模型计算甲烷再燃还原NO的结果与Glarborg的实验结果吻合;存在最佳空气过量系数0.8时甲烷再燃还原NO效率最高.进一步分析SO2对再燃还原NO影响的结果表明:随着SO2浓度的增大,最佳空气过量系数变大.富氧条件下,SO2抑制NO生成;富燃料条件下,空气过量系数在0.65~1时,SO2促进了NO的产生;但当空气过量系数小于0.65时SO2的加入已对NO的影响不大;通过敏感性分析得到的主控基元反应,对在不同条件下的SO2对NO的作用机理进行了解释.","authors":[{"authorName":"王学斌","id":"4dbab6be-6880-42ef-857f-d4fcae84f98e","originalAuthorName":"王学斌"},{"authorName":"司纪朋","id":"cc2f73f1-fdd2-4720-ac65-8951c62e0947","originalAuthorName":"司纪朋"},{"authorName":"谭厚章","id":"7f517e8d-af73-4810-82c3-8722c69d787b","originalAuthorName":"谭厚章"},{"authorName":"牛艳青","id":"755025c4-f429-42d5-ad4c-28902a1f9c11","originalAuthorName":"牛艳青"},{"authorName":"陈二强","id":"a8a9dcc8-9721-4c72-bdd9-9ac4939e5ac1","originalAuthorName":"陈二强"},{"authorName":"徐通模","id":"ebc39370-39c8-4457-b4b1-6cd3ef9e125e","originalAuthorName":"徐通模"}],"doi":"","fpage":"341","id":"d3ed704d-390b-4e36-b415-209c8573c4f4","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"c0f63774-8180-4265-8bde-564b324d19d6","keyword":"再燃","originalKeyword":"再燃"},{"id":"9228d3b2-b440-4231-a61e-2b518c8a4c3f","keyword":"甲烷","originalKeyword":"甲烷"},{"id":"74e4c3c2-7756-4a8f-919a-ab7f45315bd4","keyword":"NO","originalKeyword":"NO"},{"id":"e93e5a9a-acf6-4785-8185-2ebc4540809a","keyword":"SO2","originalKeyword":"SO2"},{"id":"e1185b69-ba6f-44ab-98a7-ed23b593e9a0","keyword":"交互作用","originalKeyword":"交互作用"}],"language":"zh","publisherId":"gcrwlxb201102042","title":"甲烷再燃还原NO过程中SO2的交互作用","volume":"32","year":"2011"},{"abstractinfo":"对硫化NiW/Al2O3催化剂上H2同时还原SO2和NO反应进行了研究,探讨了温度、空速、H2配比以及Ni负载量对反应的影响. 结果表明,催化剂的活性随反应温度的升高而增加,550 ℃时, SO2和NO在15%Ni-10%W/Al2O3上的转化率达100%,单质硫的产率达90%以上; 增加空速对NO转化率和单质硫的选择性影响不大,但SO2转化率及单质硫产率明显下降; 提高n(H2)/n(SO2+NO)的比值可显著提高SO2转化率,但单质硫选择性明显下降,其比值为2.0时单质硫产率最大,随后随H2浓度的增加而迅速下降, NO转化率几乎不受H2配比的影响; 增加催化剂的Ni含量可明显提高各反应物的转化率及单质硫的选择性和产率; 预硫化过程对催化剂性能有很大影响,是获得高活性催化剂的必要条件. 催化剂稳定性测试及XRD结果表明,催化剂不会因为晶格硫的大量流失而失活. 最后,提出了H2同时还原SO2和NO反应的机理.","authors":[{"authorName":"朱鹏","id":"39e19eca-0861-4964-836f-525c0ab31460","originalAuthorName":"朱鹏"},{"authorName":"李雪辉","id":"4cc7f5a3-e3cb-46e8-8811-ef5f3a411ca2","originalAuthorName":"李雪辉"},{"authorName":"徐建昌","id":"fd0c4bcc-5a6a-472e-9c99-d66a7d17ed89","originalAuthorName":"徐建昌"},{"authorName":"黄苑","id":"e8247e91-4ab1-4b28-8d40-f4f8dc1b6250","originalAuthorName":"黄苑"},{"authorName":"王乐夫","id":"cebdd445-0738-4fb9-84f6-66fb7a271da1","originalAuthorName":"王乐夫"}],"doi":"","fpage":"905","id":"3d4b1a82-4366-42fb-9c85-d7bb3b074d1e","issue":"10","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"b997f6fc-6eed-4776-a4ca-aa8a399e517a","keyword":"镍","originalKeyword":"镍"},{"id":"1b192fac-714f-48ed-904e-5b6638a0dd7c","keyword":"钨","originalKeyword":"钨"},{"id":"af5c8e75-27d0-4aa6-b299-91850e47cf97","keyword":"氧化铝","originalKeyword":"氧化铝"},{"id":"f3a2a9e9-b2f0-4dfd-b097-190065fe7284","keyword":"氢气","originalKeyword":"氢气"},{"id":"d82e811d-beba-4701-a3c0-e44838fe664b","keyword":"催化还原","originalKeyword":"催化还原"},{"id":"7a0ef52f-d291-4d69-acb7-5807a7b92438","keyword":"二氧化硫","originalKeyword":"二氧化硫"},{"id":"dff83d9e-38de-4198-a16a-524391d3681a","keyword":"一氧化氮","originalKeyword":"一氧化氮"},{"id":"2df0aca2-17cd-4c63-a8f3-dc4333894d24","keyword":"废气处理","originalKeyword":"废气处理"}],"language":"zh","publisherId":"cuihuaxb200510018","title":"硫化NiW/Al2O3催化剂上H2同时催化还原SO2和NOⅡ. SO2和NO的同时还原","volume":"26","year":"2005"},{"abstractinfo":"对系列过渡金属硫化物催化剂上CO还原SO2的反应进行了研究. 结果表明,FeS的催化性能最好,而MnS的催化性能最差,其他几种催化剂的活性顺序依次为CoS>CuS>NiS. 催化剂的活性与硫化物自身的氧化还原能力、所具有的晶相结构及其同SO2的吸附键合作用力有密切的关系. 在硫化物催化剂上,SO2还原的反应机理很可能是贫、富含硫化合物的交替作用机理.","authors":[{"authorName":"胡大为","id":"780af3ab-8f44-4854-b375-147ccd388870","originalAuthorName":"胡大为"},{"authorName":"秦永宁","id":"57ef3c4a-79bd-4cd7-8797-d2f2cf190e8b","originalAuthorName":"秦永宁"},{"authorName":"马智","id":"229dbf35-f29d-42a3-8d4c-bbf170afa93e","originalAuthorName":"马智"},{"authorName":"韩森","id":"9e95d372-2c4a-4bcd-9792-5063ad7a8317","originalAuthorName":"韩森"}],"doi":"","fpage":"425","id":"409efe1c-fb8e-4c49-926d-592d8c287bf1","issue":"5","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"5422a210-5f83-4b6f-aca7-fd52e3bfdea2","keyword":"过渡金属","originalKeyword":"过渡金属"},{"id":"60312876-c5dc-4904-84e2-a45805e30ead","keyword":"硫化物","originalKeyword":"硫化物"},{"id":"743efb73-6a63-485d-97fc-873230c77597","keyword":"二氧化硫","originalKeyword":"二氧化硫"},{"id":"08bb683e-82a7-43ab-8e4a-ca28f87d4e23","keyword":"还原","originalKeyword":"还原"},{"id":"7ec175c5-94d1-4fc4-a82e-cad2b8f1d016","keyword":"反应机理","originalKeyword":"反应机理"}],"language":"zh","publisherId":"cuihuaxb200205010","title":"过渡金属硫化物催化剂上SO2的还原","volume":"23","year":"2002"},{"abstractinfo":"以Ag/Al2O3为催化剂,采用原位漫反射傅里叶变换红外光谱法研究了SO2对C3H6选择性还原NOx反应的影响. 结果表明, SO2在催化剂表面转化为硫酸盐,并且随着硫酸盐累积量的增加,其主要红外特征吸收峰由低波数向高波数漂移. 高浓度表面硫酸盐的存在不仅抑制了催化剂表面硝酸盐的生成,而且抑制了硝酸盐与表面烯醇式物种(RCH=CH- O-)或乙酸盐物种进一步反应,生成活泼的反应中间体异氰酸酯(- NCO), 这是导致Ag/Al2O3催化剂上C3H6选择性还原NOx活性降低的主要原因.","authors":[{"authorName":"吴强","id":"63157415-9213-43c3-8a21-044f0a965096","originalAuthorName":"吴强"},{"authorName":"高洪伟","id":"7751d897-eee1-4a91-a393-a06d0600dd5f","originalAuthorName":"高洪伟"},{"authorName":"贺泓","id":"b7435b7b-abcb-4e1f-bd1e-5db8cf09ba34","originalAuthorName":"贺泓"}],"doi":"","fpage":"403","id":"416405e1-8c5c-4888-8517-fae71e8ca93b","issue":"5","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"7f4c81ec-b477-40fb-925d-d91c68ef7801","keyword":"银","originalKeyword":"银"},{"id":"4733f5e5-5ab8-4771-827e-b41d9cd9ad85","keyword":"氧化铝","originalKeyword":"氧化铝"},{"id":"c368cbfe-eb35-4a19-b465-aec8b6845862","keyword":"氮氧化物","originalKeyword":"氮氧化物"},{"id":"0efe158b-0631-4041-9791-c385b1272360","keyword":"二氧化硫","originalKeyword":"二氧化硫"},{"id":"d2a8a422-1cc7-4d9f-be0d-d131a3b4c402","keyword":"丙烯","originalKeyword":"丙烯"},{"id":"ff7e7fc3-a328-4226-b129-9fdedb228563","keyword":"选择性催化还原","originalKeyword":"选择性催化还原"},{"id":"6ea58d6e-9573-4bdb-8a29-aef757036a4b","keyword":"原位漫反射傅里叶变换红外光谱","originalKeyword":"原位漫反射傅里叶变换红外光谱"},{"id":"b5be94d4-d7e1-4084-bfa6-2b9ee40e4130","keyword":"硫酸盐","originalKeyword":"硫酸盐"}],"language":"zh","publisherId":"cuihuaxb200605009","title":"原位漫反射红外光谱法研究SO2对Ag/Al2O3选择性催化丙烯还原NOx反应的影响","volume":"27","year":"2006"},{"abstractinfo":"研究了在γ-Al2O3上负载的铁系钙钛矿的结构特征,发现B位掺杂Cu和Co后,虽然提高了催化剂的氧化还原能力,但由于Cu2+、Co3+离子的加入,使活性组分与SO2键合作用加强,提高了还原SO2过程中CO氧化反应的难度,导致催化剂还原SO2的活性下降;在A位掺杂Sr后,由于缺陷的有序化反而导致催化剂的氧化还原能力下降,也导致其还原SO2 性能的下降;XRD结果显示,催化剂在反应过程中一直保持了钙钛矿结构,因而特殊的化学结构使催化剂具有很高的催化活性;XPS结果表明,催化剂表面不同的硫物种对反应有不同的影响.","authors":[{"authorName":"胡大为","id":"97872074-f94b-4618-898b-2293027cc9b5","originalAuthorName":"胡大为"},{"authorName":"秦永宁","id":"8742947e-a2a9-4b29-8f14-34bf016b5074","originalAuthorName":"秦永宁"},{"authorName":"马智","id":"4796162b-c72c-4b1f-9f84-31759ce5c946","originalAuthorName":"马智"},{"authorName":"何菲","id":"4277fcc0-a4b0-4bb4-849d-e81a0286a1b2","originalAuthorName":"何菲"}],"doi":"10.3969/j.issn.1000-0518.2003.05.010","fpage":"452","id":"359cca2f-1588-4e4c-858f-6c00ca7922e6","issue":"5","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"1722d202-0403-4910-957c-e7f0f0e71476","keyword":"负载型催化剂","originalKeyword":"负载型催化剂"},{"id":"8a950d69-6804-421e-a412-e1513ff99f3a","keyword":"铁钙钛矿","originalKeyword":"铁钙钛矿"},{"id":"138389fa-5a56-4ca6-ac73-d5f8d63ab154","keyword":"二氧化硫","originalKeyword":"二氧化硫"},{"id":"ddd5f3a0-d9d8-41db-9832-870ef3793805","keyword":"催化还原","originalKeyword":"催化还原"}],"language":"zh","publisherId":"yyhx200305010","title":"负载型铁系钙钛矿催化剂结构对SO2还原的影响","volume":"20","year":"2003"},{"abstractinfo":"利用 X 射线衍射(XRD),X 射线光电子能谱(XPS)及活性测试对铈钛复合氧化物的结构及催化脱硫特性进行了研究。结果表明:当铈?钛摩尔比(n(Ce)/n(Ti))≥5:5时,铈钛复合氧化物形成固溶体;当 n(Ce)/n(Ti)=7:3(即Ce0.7Ti0.3O2)时,具有最佳的催化脱硫效果;500°C 下 SO2的转化率达到93%,单质硫的产率达到99%。根据Ce0.7Ti0.3O2的活性测试曲线发现:未经预处理的 Ce0.7Ti0.3O2约10 min 后开始逐渐被反应气体活化,并在60 min后达到稳定活化状态。通过对不同反应时间下所得 Ce0.7Ti0.3O2进行 XPS 分析发现: CeO2为活性物质,在反应过程中形成 Ce4+/Ce3+氧化还原电对和活性氧空位,而 TiO2仅起到稳定催化剂结构的作用。Ce0.7Ti0.3O2催化 SO2+CO反应48 h 后未出现硫化现象,始终保持结构的稳定,表现出较好的抗硫中毒性能。","authors":[{"authorName":"张丽","id":"e13ef57e-eb88-4856-9a70-b08f578623df","originalAuthorName":"张丽"},{"authorName":"秦毅红","id":"d6ebfa2b-9e6a-4a39-9ba5-9db6648229e9","originalAuthorName":"秦毅红"},{"authorName":"陈白珍","id":"9c87b375-5f7d-4a62-b01a-0c68ad16f0e9","originalAuthorName":"陈白珍"},{"authorName":"彭亚光","id":"d79fafcc-358c-4548-a273-c617544597a1","originalAuthorName":"彭亚光"},{"authorName":"何汉兵","id":"1df7ae44-96f4-4fdc-a303-c5634d9f2271","originalAuthorName":"何汉兵"},{"authorName":"袁依","id":"88f2f39b-af27-4260-a689-cb737357f96c","originalAuthorName":"袁依"}],"doi":"10.1016/S1003-6326(16)64426-6","fpage":"2960","id":"1e490aea-eb89-480f-8582-06a633d253a7","issue":"11","journal":{"abbrevTitle":"ZGYSJSXBEN","coverImgSrc":"journal/img/cover/ZGYSJSXBEN.jpg","id":"757390d2-7d95-4517-96f1-e467ce1bff63","issnPpub":"1003-6326","publisherId":"ZGYSJSXBEN","title":"中国有色金属学报(英文版)"},"keywords":[{"id":"ae27036f-2655-49b1-bb37-abdf7ea1b1e1","keyword":"铈钛复合氧化物","originalKeyword":"铈钛复合氧化物"},{"id":"21a82c67-62d3-4df6-9bbc-8f9f546c485f","keyword":"固溶体","originalKeyword":"固溶体"},{"id":"23509841-479b-4331-a5d4-6d0bde7798af","keyword":"催化还原","originalKeyword":"催化还原"},{"id":"cc13753c-d0bc-4b16-9389-e693304e057e","keyword":"一氧化碳","originalKeyword":"一氧化碳"},{"id":"682525bf-d7aa-4e5f-beeb-d0e57f68367c","keyword":"二氧化硫","originalKeyword":"二氧化硫"}],"language":"zh","publisherId":"zgysjsxb-e201611020","title":"铈钛复合氧化物催化 CO 还原 SO2","volume":"26","year":"2016"},{"abstractinfo":"对钙钛矿LaCoO3在含氧气氛下的预硫化过程进行了研究. 结果表明,在一定含氧气氛下硫化后的LaCoO3催化剂,用于含氧气氛下CO还原SO2反应具有很高的活性. XRD物相分析结果表明,硫化后的LaCoO3仍保持钙钛矿物相结构,但同时出现新的硫化物La2O2S和氧化物Co3O4物相. 通过对硫化前后的催化剂进行O2-TPD和SO2-TPD分析,认为CO还原SO2反应机理可能是在一定的温度下,在钙钛矿LaCoO3上发生CO氧化燃烧反应,在硫化物La2O2S上发生CO还原SO2反应,两者相互促进. ","authors":[{"authorName":"贾立山","id":"34c0c6cd-9412-40c8-b197-edb3dc7b1966","originalAuthorName":"贾立山"},{"authorName":"秦永宁","id":"711a475a-17d9-4af5-ae90-959cfbdac603","originalAuthorName":"秦永宁"},{"authorName":"马智","id":"9ee8c4ab-1aba-42f6-8af8-15a4701bc785","originalAuthorName":"马智"},{"authorName":"齐晓舟","id":"6d281b96-f72a-4133-8570-78c82107545f","originalAuthorName":"齐晓舟"},{"authorName":"丁彤","id":"03ccdc7d-b259-46b3-894f-c30f4ab56a82","originalAuthorName":"丁彤"},{"authorName":"梁珍成","id":"bf88f37f-7c5e-4926-b42d-6beb2165ff69","originalAuthorName":"梁珍成"}],"doi":"","fpage":"751","id":"ef1ef1de-54e2-494f-b2dc-5325da9d1a71","issue":"10","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"54629b8a-5737-48f9-a25e-ef8b13f669bd","keyword":"钙钛矿","originalKeyword":"钙钛矿"},{"id":"ec398c89-7f3a-441c-9678-c2bdc1c9bed1","keyword":"硫化","originalKeyword":"硫化"},{"id":"02d55c69-5fe2-4568-8318-95397dc4b9c1","keyword":"二氧化硫","originalKeyword":"二氧化硫"},{"id":"e82877fe-2bd0-42c1-9db3-5ff9a917af22","keyword":"还原","originalKeyword":"还原"},{"id":"6f13266b-7d45-4eba-922e-0c5906b77140","keyword":"一氧化碳","originalKeyword":"一氧化碳"},{"id":"1570eaf8-3eb1-4afa-93f7-418f1c51a0b1","keyword":"反应机理","originalKeyword":"反应机理"}],"language":"zh","publisherId":"cuihuaxb200310008","title":"含氧气氛下预硫化钙钛矿LaCoO3上的CO还原SO2反应","volume":"24","year":"2003"},{"abstractinfo":"以稀土系列氧化物作为CO还原SO2和NO的催化剂,考察了催化剂的活化过程以及催化剂体相结构的变化.发现稀土系列氧化物的活化与其水合性能密切相关,而活化之后活性相为相应的稀土氧硫化物.探讨了稀土系列氧化物的活化机理.","authors":[{"authorName":"王磊","id":"3430fe50-b8ac-4f98-9c69-ba814767175f","originalAuthorName":"王磊"},{"authorName":"马建新","id":"1e89aae2-6609-41ab-9922-e61b850668ee","originalAuthorName":"马建新"},{"authorName":"路小峰","id":"e06a4836-cc3f-4a25-bfbb-5d96bdd4ce2f","originalAuthorName":"路小峰"},{"authorName":"宗方","id":"7072578c-332b-4d44-aa6b-1be550907d3f","originalAuthorName":"宗方"}],"doi":"","fpage":"542","id":"4af502dd-3494-4b5d-9789-197f696efebe","issue":"6","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"27d2d6f7-92e7-44cc-a639-7ef650022ec9","keyword":"稀土氧化物","originalKeyword":"稀土氧化物"},{"id":"283c9d33-b48c-4983-9da3-41b3c10f4ab6","keyword":"二氧化硫","originalKeyword":"二氧化硫"},{"id":"249c16a2-6476-42e5-8ee2-07990bfd457b","keyword":"一氧化碳","originalKeyword":"一氧化碳"},{"id":"e467d182-d976-4f00-bf98-7fdc896c58a5","keyword":"催化还原","originalKeyword":"催化还原"},{"id":"152b0ec6-ad50-40fd-8859-4439f9683f03","keyword":"脱硫","originalKeyword":"脱硫"},{"id":"2c8fce0a-704d-43ff-95c8-b092a17a1e88","keyword":"活化","originalKeyword":"活化"}],"language":"zh","publisherId":"cuihuaxb200006009","title":"稀土氧化物上SO2和NO的催化还原Ⅰ.催化剂的活化特性和机理","volume":"21","year":"2000"}],"totalpage":10148,"totalrecord":101472}