{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"研究了在放电等离子烧结(SPS)条件下,纳米碳化(V_8C_7)对超细WC基硬质合金的相组成、微观组织及性能的影响.结果表明:超细WC基硬质合金主要由WC和Co_3C两相组成,相对于未烧结的硬质合金材料,WC的衍射峰向小角度方向偏移;纳米碳化可以有效抑制超细WC基硬质合金中WC晶粒的长大,并且随着纳米碳化比表面积的增大而增强,添加比表面积为63.36m~2/g的纳米V_8C_7后,硬质合金中大部分WC的晶粒尺寸<0.5μm;纳米碳化对超细WC基硬质合金的性能具有重要影响,并且随着纳米碳化比表面积的增大而增加,添加比表面积为63.36m~2/g的纳米V_8C_7后,超细WC基硬质合金具有较高的性能(相对密度99.7%,洛氏硬度93.4,断裂韧性12.7MPa·m~(1/2)).","authors":[{"authorName":"赵志伟","id":"69231293-c5b4-43a0-ab69-4d0145d6719b","originalAuthorName":"赵志伟"},{"authorName":"刘颖","id":"f4a5cdc7-45eb-4739-bd9b-6864bc18b6ad","originalAuthorName":"刘颖"},{"authorName":"宋伟强","id":"d5b63d2a-449e-4791-846e-0c472a99fea7","originalAuthorName":"宋伟强"},{"authorName":"邹文俊","id":"a6946ab2-fe99-4192-a489-6d64fee24091","originalAuthorName":"邹文俊"},{"authorName":"左宏森","id":"5e4c6aba-0232-4de4-b6b0-ede3cad36501","originalAuthorName":"左宏森"},{"authorName":"李彦涛","id":"ad365636-28e0-480a-b3d7-a057c230f8a2","originalAuthorName":"李彦涛"}],"doi":"","fpage":"304","id":"5d50dfdd-c3f5-45ec-a180-81bd65369ad7","issue":"2","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"646bd663-790a-4470-be0d-05aa210516de","keyword":"硬质合金","originalKeyword":"硬质合金"},{"id":"f7aa4396-ce84-434b-a816-c4b99cc893d9","keyword":"放电等离子烧结","originalKeyword":"放电等离子烧结"},{"id":"fc28a1a1-f9bc-4e7d-9d16-e48a78138148","keyword":"纳米碳化","originalKeyword":"纳米碳化钒"},{"id":"28196de6-3349-475e-a04a-05ceb867c0e0","keyword":"微观组织","originalKeyword":"微观组织"},{"id":"e5ae7d53-9de0-4529-b210-7ce995a6e334","keyword":"性能","originalKeyword":"性能"}],"language":"zh","publisherId":"gncl201002035","title":"纳米碳化对超细WC基硬质合金的影响","volume":"41","year":"2010"},{"abstractinfo":"将偏酸铵和纳米碳黑溶于去离子水中,通过加热、干燥后制得前驱体粉末,将前驱体粉末还原/碳化后得到纳米V8C7粉末.采用X射线衍射仪(XRD)、扫描电镜(SEM)和透射电镜(TEM)对不同保温时间下的反应产物进行了分析.结果表明:保温时间过短或过长,都会造成反应产物的形貌和晶粒尺寸偏大.保温时间过短,反应不完全,正在发生相转变,颗粒形貌和晶粒尺寸偏大;保温时间过长,反应产物呈熔融状,并有游离碳和VC析出.只有当保温时间达到或接近最佳值时,反应才能进行彻底,颗粒的形貌较规则,呈球形或类球形,平均粒径在20 nm左右.","authors":[{"authorName":"赵志伟","id":"7e90b229-09b5-482c-958d-60cc2efbc642","originalAuthorName":"赵志伟"},{"authorName":"刘颖","id":"b9044448-5176-4be6-809b-fac83bc6de12","originalAuthorName":"刘颖"},{"authorName":"曹泓","id":"43d917b5-ad4f-4541-87be-e33f0981eb36","originalAuthorName":"曹泓"},{"authorName":"高升吉","id":"37bd5e76-fc2f-432f-b5bf-028f9a51c240","originalAuthorName":"高升吉"},{"authorName":"涂铭旌","id":"e730fa9a-cc0b-4e20-b125-172dd07c1d50","originalAuthorName":"涂铭旌"}],"doi":"","fpage":"104","id":"a3c436e0-7441-4e67-aa5a-752c5266d19f","issue":"z3","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"372a572a-5757-4248-bbeb-51509112c461","keyword":"纳米碳化","originalKeyword":"纳米碳化钒"},{"id":"a1bc242c-259d-4ada-9f29-029f29ddcae8","keyword":"还原/碳化","originalKeyword":"还原/碳化"},{"id":"fc35a8f1-9cc5-4a83-bc56-680aa3ee44cb","keyword":"偏酸铵","originalKeyword":"偏钒酸铵"},{"id":"cec8dc02-5e93-4f49-b23c-28dfac42bbfd","keyword":"前驱体粉末","originalKeyword":"前驱体粉末"}],"language":"zh","publisherId":"xyjsclygc2007z3025","title":"前驱体碳热还原法制备纳米V8C7粉末","volume":"36","year":"2007"},{"abstractinfo":"采用纳米碳化(V8C7)粉末作为晶粒抑制剂及放电等离子烧结(SPS)方式制备超细WC基硬质合金.X射线衍射结果表明:超细WC基硬质合金主要由WC和Co3C两相组成,随着温度的升高,WC的衍射峰逐渐向小角度偏移.扫描电镜结果表明:SPS和纳米V8C7粉末对超细WC基硬质合金的微观组织具有重要影响.SPS使超细WC基硬质合金在较低温度下(1200℃)实现致密化;纳米V8C7粉末可以有效抑制超细WC基硬质合金中WC的晶粒长大,1200℃时WC的晶粒尺寸约500 nm.力学性能结果表明:1200℃时超细WC基硬质合金具有较高的性能(相对密度99.5%,洛氏硬度93.2,断裂韧性12.5 MPa·m1/2).","authors":[{"authorName":"赵志伟","id":"21cc36c0-edc3-43c9-9e6b-6cc2d42e5a02","originalAuthorName":"赵志伟"},{"authorName":"郑红娟","id":"527326d9-54e9-4d57-9eb6-a0484025b47d","originalAuthorName":"郑红娟"},{"authorName":"刘颖","id":"3104ae53-1293-4814-9baa-8303cf9831d1","originalAuthorName":"刘颖"},{"authorName":"邹文俊","id":"520b9214-4160-47ad-b126-a4f06c7864b8","originalAuthorName":"邹文俊"},{"authorName":"左宏森","id":"194e69fb-23be-454d-8195-672c23ca807f","originalAuthorName":"左宏森"},{"authorName":"关春龙","id":"4f5717ad-24d0-456b-89d1-4ef0ff76c2fa","originalAuthorName":"关春龙"}],"doi":"","fpage":"40","id":"5ce87664-263f-4ba9-bd75-a8d03ef96f6d","issue":"8","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"f8fd9f84-ff62-43bf-a0d6-0f500649d173","keyword":"硬质合金","originalKeyword":"硬质合金"},{"id":"dcd98b0b-03b6-4a05-9e57-9c1d07e1cd33","keyword":"放电等离子烧结","originalKeyword":"放电等离子烧结"},{"id":"9aeb80ca-0176-4bcf-a7b4-7dc447bdae66","keyword":"纳米碳化","originalKeyword":"纳米碳化钒"},{"id":"100efd8e-939d-4561-aac4-955b300b12f5","keyword":"微观组织","originalKeyword":"微观组织"},{"id":"11c82eee-2766-48b5-bebb-dc4549b49413","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"jsrclxb201008009","title":"放电等离子烧结制备超细WC基硬质合金","volume":"31","year":"2010"},{"abstractinfo":"弥散分布的纳米碳化颗粒能明显提高TWIP钢的屈服强度,但同时将在一定程度上降低加工硬化率.采用一个修正的物理模型来研究纳米碳化颗粒对一种实验室等级的FeMnC奥氏体TWIP钢加工硬化率的影响.试验发现在塑性变形过程中弥散分布的纳米碳化颗粒会加快位错累积速率,但也会降低孪晶形成速率.与不含析出相的TWIP钢相比,在小应变时含纳米碳化颗粒的TWIP钢加工硬化率较高,但随着应变量的增加其硬化率减小的速度高于不含析出相的TWIP钢,因此在高应变条件下含纳米碳化颗粒的TWIP显示出较低的钢加工硬化率.","authors":[{"authorName":"","id":"a4673a78-d9eb-4e83-a7b1-096c37b0fc89","originalAuthorName":""},{"authorName":"","id":"682dce44-a459-43d9-8daa-1b3ec28f1008","originalAuthorName":""},{"authorName":"","id":"917babb6-d258-42da-a51e-4ddd41d3082a","originalAuthorName":""},{"authorName":"","id":"1f097302-77b2-4277-b798-1c7a1f09d3ed","originalAuthorName":""},{"authorName":"魏世同","id":"702b5973-0674-40b4-93d0-d7a7c9b5e0e4","originalAuthorName":"魏世同"}],"doi":"10.7513/j.issn.1004-7638.2014.01.008","fpage":"36","id":"712df555-c3fd-4e44-b8fb-198ade583e72","issue":"1","journal":{"abbrevTitle":"GTFT","coverImgSrc":"journal/img/cover/gtft1.jpg","id":"28","issnPpub":"1004-7638","publisherId":"GTFT","title":"钢铁钒钛"},"keywords":[{"id":"7e300afc-4507-417b-9b09-60390ea2d585","keyword":"TWIP钢","originalKeyword":"TWIP钢"},{"id":"c07bdb09-3ebf-478a-826e-d34633f95674","keyword":"碳化","originalKeyword":"碳化钒"},{"id":"2ca3bada-8b9c-495a-a640-d56972b0097a","keyword":"加工硬化","originalKeyword":"加工硬化"},{"id":"9d83cdda-b6b8-4040-b80c-93f4dde39d5c","keyword":"位错演化","originalKeyword":"位错演化"},{"id":"9262677e-9c11-49f0-a6c6-734b0fdbbada","keyword":"孪生动力学","originalKeyword":"孪生动力学"}],"language":"zh","publisherId":"gtft201401008","title":"纳米碳化强化TWIP钢加工硬化机制研究","volume":"35","year":"2014"},{"abstractinfo":"为了制备高纯的碳化粉末,对五氧化二为原料小批量制备所得碳化产物进行了真空热处理。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、LECO碳氧分析仪等测试手段对热处理产物进行了表征,重点研究了热处理温度对碳化粉末的影响,并用X射线光电子能谱仪(XPS)测试探讨了热处理对碳化纯化的机理。结果表明:在1100℃的热处理温度下,可得到有序的V8C7相,游离碳和氧含量分别为0.18%、0.31%;热处理的过程使得碳化中的游离碳和氧的下降是粉末中游离碳和剩余的少量氧化物发生了进一步的还原反应和粉末中吸附水的消失造成的。","authors":[{"authorName":"姜中涛","id":"6deaf6bb-bbfe-41eb-9316-d8d9c5d50e4b","originalAuthorName":"姜中涛"},{"authorName":"刘颖","id":"d97393ea-fa96-4b52-9055-052c550e77aa","originalAuthorName":"刘颖"},{"authorName":"李力","id":"51526368-6d82-4592-9ad0-e7246ddc7710","originalAuthorName":"李力"},{"authorName":"陈巧旺","id":"c445149c-db19-4142-9e78-1b912b71f315","originalAuthorName":"陈巧旺"},{"authorName":"涂铭旌","id":"0f24328f-14d0-4516-8868-f3e222878fb2","originalAuthorName":"涂铭旌"}],"doi":"","fpage":"6","id":"5122783f-54ab-4e2b-8772-b43c7c8cb0cc","issue":"3","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"e1cf0e32-5f7a-4828-9399-2e6b3a28587c","keyword":"碳化","originalKeyword":"碳化钒"},{"id":"085cfa6e-7ae7-443e-a870-c97118dcb8ff","keyword":"真空热处理","originalKeyword":"真空热处理"},{"id":"1f00eb44-414f-4fef-8601-ac3cd814f216","keyword":"XPS","originalKeyword":"XPS"},{"id":"b0971bdc-8a24-49cd-8301-db6478f0d541","keyword":"纯化","originalKeyword":"纯化"}],"language":"zh","publisherId":"jsrclxb201203003","title":"真空热处理对碳化粉末制备的影响","volume":"33","year":"2012"},{"abstractinfo":"以渣亚熔盐法铬共提工艺所得到的中间产品酸钙为研究对象,针对酸钙后续产品转化问题,提出酸钙碳化铵化生产氧化物的工艺路线;研究NH4HCO3转化溶出的工艺条件,考察是否通入CO2NH4HCO3的添加量、反应温度、不同液固比以及反应时间等对酸钙转化溶出效果的影响.结果表明:酸钙碳化铵化反应的最佳条件为反应温度75℃,液固比20∶1,通入CO2,且流速1.5 L/min,铵摩尔比1.0,反应时间1h,此条件下酸钙中转化率为97.35%.","authors":[{"authorName":"闫红","id":"4c34c915-6425-469c-9ce5-1506c126096b","originalAuthorName":"闫红"},{"authorName":"王少娜","id":"7bcf43c7-a1d2-47b6-8775-0d9a912a4ef1","originalAuthorName":"王少娜"},{"authorName":"杜浩","id":"32208565-282d-4c80-8b71-73cedecdd4c4","originalAuthorName":"杜浩"},{"authorName":"郑诗礼","id":"7b0925fe-bd4d-4cd4-8cd5-cf1536c2400c","originalAuthorName":"郑诗礼"},{"authorName":"张懿","id":"5aaee5a8-4555-45aa-8ce0-b91dfcf18259","originalAuthorName":"张懿"}],"doi":"","fpage":"2023","id":"511c10da-2680-4b04-8ff7-1df538ed20d2","issue":"9","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"146ff678-a396-4621-be4f-b7275a3f0bdc","keyword":"渣","originalKeyword":"钒渣"},{"id":"836accb4-c48c-4126-ac0b-3a6dca8fbede","keyword":"亚熔盐","originalKeyword":"亚熔盐"},{"id":"7af56403-6eec-47e4-8012-805c84fc3e26","keyword":"酸钙","originalKeyword":"钒酸钙"},{"id":"0c738ff8-4c62-4667-9293-a81d9733b213","keyword":"碳化铵化","originalKeyword":"碳化铵化"},{"id":"b893729f-0827-4ebf-ae90-e1c5b7863919","keyword":"碳酸氢铵","originalKeyword":"碳酸氢铵"}],"language":"zh","publisherId":"zgysjsxb201609025","title":"酸钙碳化铵化生产氧化物的反应规律","volume":"26","year":"2016"},{"abstractinfo":"分别以BET粒度为0.15 μm和0.23 μm的碳化钨粉末与钴湿磨压制制备成WC-90%Co试样条,分别以Fsss粒度为1.0 μm和1.5 μm的碳化粉末与钴湿磨压制制备成VC-95%Co试样条.将以上四种试样条分别于1 100、1 150、1 200℃进行真空烧结,将烧结后的试样条研磨抛光后采用X衍射仪和扫描电镜研究碳化钨和碳化在固相钴中的固溶情况.研究结果表明:两种粒度的WC均于1 150℃逐渐溶解到Co中形成γ-固溶体,其固溶度随温度升高而增大,1 200℃固溶完全;两种粒度的VC粉末于1 100℃逐渐溶解到Co中形成γ-固溶体,1 150℃固溶完全.","authors":[{"authorName":"屈广林","id":"8d505c6b-abda-499f-8e24-892d0af0c96c","originalAuthorName":"屈广林"},{"authorName":"颜练武","id":"f8853cac-4b7d-4dbf-a388-64afca5c3ef5","originalAuthorName":"颜练武"},{"authorName":"张卫兵","id":"c1ab1b30-85da-4522-83da-f369e250351a","originalAuthorName":"张卫兵"},{"authorName":"何惧","id":"bdd695e3-cc6d-4903-a738-e2318b750020","originalAuthorName":"何惧"}],"doi":"10.3969/j.issn.1003-7292.2014.02.002","fpage":"8","id":"7e58db2d-575d-40b8-9661-2be7cbeee3a9","issue":"1","journal":{"abbrevTitle":"YZHJ","coverImgSrc":"journal/img/cover/YZHJ.jpg","id":"75","issnPpub":"1003-7292","publisherId":"YZHJ","title":"硬质合金"},"keywords":[{"id":"cb10d6f9-4126-4177-9ad6-11ec05bcc358","keyword":"碳化钨","originalKeyword":"碳化钨"},{"id":"b81b2bb6-234a-4e6a-bc26-f5716789ef6a","keyword":"碳化","originalKeyword":"碳化钒"},{"id":"a44206a2-0fcc-4365-8735-7ed25a35216e","keyword":"钴","originalKeyword":"钴"},{"id":"9f90fdf4-1a40-4d7f-a652-a434c189cfff","keyword":"固溶","originalKeyword":"固溶"}],"language":"zh","publisherId":"yzhj201401002","title":"碳化钨和碳化在固相钴中的固溶研究","volume":"31","year":"2014"},{"abstractinfo":"超细晶硬质合金具有优异的性能,而纳米碳化钨是其制备的直接原料.采用酚醛树脂作为供碳源,研究了微波加热对纳米钨粉碳化过程的作用.研究发现,在微波碳化时只依靠钨粉自身发热不能完成碳化过程,而采用加入微波吸收物质的混合加热方式能提供足够的热量得到完全的碳化钨相;微波碳化时间很短,能有效防止碳化钨的过分长大.平均粒度50 nm的钨粉经过微波加热碳化得到平均粒度为84 nm的碳化钨粉末.","authors":[{"authorName":"李会谦","id":"c4064ea6-7012-4c2f-b453-42a3d6c0e5ee","originalAuthorName":"李会谦"},{"authorName":"林涛","id":"39ae753f-5061-4bfb-8440-5eb8e06e8b46","originalAuthorName":"林涛"},{"authorName":"罗骥","id":"ed1ffb2f-9c2e-49e5-b81e-706c440243ad","originalAuthorName":"罗骥"},{"authorName":"吴成义","id":"495f6129-6a53-4049-95c8-bbfdd90861e0","originalAuthorName":"吴成义"},{"authorName":"郭志猛","id":"a3bf4f5a-6ef0-4b0c-9f00-a2174e95f620","originalAuthorName":"郭志猛"}],"doi":"10.3969/j.issn.0258-7076.2006.z2.014","fpage":"54","id":"e756fc79-aa90-4844-a872-8c513b1d7e4d","issue":"z2","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"03114120-1a1f-45ab-9689-4af11ebc935a","keyword":"纳米","originalKeyword":"纳米"},{"id":"75c0aa6b-dc58-4f2d-bba8-720e717f0d2e","keyword":"碳化钨","originalKeyword":"碳化钨"},{"id":"808cafbf-85e0-45a7-b1c6-035d62511103","keyword":"微波","originalKeyword":"微波"},{"id":"6905cd7c-3bbe-42f6-a1d0-c54b223292ba","keyword":"硬质合金","originalKeyword":"硬质合金"}],"language":"zh","publisherId":"xyjs2006z2014","title":"纳米钨粉的微波碳化","volume":"30","year":"2006"},{"abstractinfo":"研究了采用真空碳热还原法由三氧化二制备碳化, 并研究了碳化产物密度随实验条件的变化规律, 找到了用于强化碳化产物密度的添加剂, 研究结果表明, 反应温度、添加剂是影响碳化产物密度的主要因素, 反应时间对产物密度也有一定影响. 研究结果同时表明, 含铁化合物能有效地提高产物密度. ","authors":[{"authorName":"卢志玉","id":"9b1069bb-8776-485b-ba40-2541c7230a63","originalAuthorName":"卢志玉"},{"authorName":"罗冬梅","id":"e5d0828b-e7ca-4ab6-ae65-bf2e4b773f40","originalAuthorName":"罗冬梅"},{"authorName":"陈厚生","id":"841ef500-a7bf-42ee-b0fc-adfdfae28a64","originalAuthorName":"陈厚生"},{"authorName":"隋智通","id":"f85f53b6-1615-4ae2-bdf8-1f20bd07f0e1","originalAuthorName":"隋智通"}],"doi":"10.3969/j.issn.0258-7076.2003.01.032","fpage":"132","id":"6dca648e-1dc2-4ad5-859e-f4b37cccef94","issue":"1","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"cca56a19-db21-4fdd-bea8-46d8effe7d2b","keyword":"三氧化二","originalKeyword":"三氧化二钒"},{"id":"150c5e33-9e95-4a4c-ad34-8be58ec0bafe","keyword":"碳化","originalKeyword":"碳化钒"},{"id":"67ffe2a7-5825-4a27-bea6-9996551341ce","keyword":"密度","originalKeyword":"密度"},{"id":"5ef584d9-45f3-46bd-a775-3908a502bae2","keyword":"真空碳热还原法","originalKeyword":"真空碳热还原法"}],"language":"zh","publisherId":"xyjs200301032","title":"真空碳热还原法制备高密度碳化","volume":"27","year":"2003"},{"abstractinfo":"以氧化和石墨粉为原料,采用聚乙烯醇粘接制备阴极片.以光谱石墨棒为阳极,阴极片在800℃氯化钙熔盐中自烧结,恒电压3.2 V下,通过熔盐电解法制备碳化.结果表明:粘接的阴极片强度满足熔盐电解的要求,通过熔盐电解,不仅完成阴极片自烧结的过程,并制备出组分单一的碳化粉体.通过不同电解阶段产物的物相及循环伏安曲线对反应机制进行研究的结果表明:碳化的形成过程为3步反应:V5++ (C)→V3++(C)→V2++(C)→v(Gx).","authors":[{"authorName":"郎晓川","id":"b0664a68-77a3-4b9c-944d-dd7b353fb738","originalAuthorName":"郎晓川"},{"authorName":"谢宏伟","id":"790f0168-923f-4c8a-b7f4-a0b608135151","originalAuthorName":"谢宏伟"},{"authorName":"翟玉春","id":"ed2702f4-cb21-4ad2-b26c-4d29be57e933","originalAuthorName":"翟玉春"},{"authorName":"邹祥宇","id":"d1d0f512-a7d5-4f3f-825b-2e678f68e395","originalAuthorName":"邹祥宇"}],"doi":"","fpage":"2515","id":"6ce35d45-a59e-4f4e-9d5e-7c0cc9498df0","issue":"10","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"5dc9c20d-de4a-44c3-8f3e-f686a41702f9","keyword":"熔盐电解","originalKeyword":"熔盐电解"},{"id":"2d9706c6-3083-45e4-802f-e341de112935","keyword":"碳化","originalKeyword":"碳化钒"},{"id":"7d606154-f10e-48a5-9ab1-913c943a8bd8","keyword":"循环伏安法","originalKeyword":"循环伏安法"},{"id":"37133e33-5546-481a-87fd-1a4d50f535c2","keyword":"自烧结","originalKeyword":"自烧结"},{"id":"4bf131c4-7142-4935-a825-eb2f0698f694","keyword":"机制","originalKeyword":"机制"}],"language":"zh","publisherId":"xyjsclygc201410043","title":"CaCl2熔盐中自烧结电解制备碳化及其机制","volume":"43","year":"2014"}],"totalpage":2920,"totalrecord":29197}