{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"从制备方法、改性处理、性能研究方法等方面介绍了镁-镍基纳米/非晶储氢材料近年来的研究进展,并对其发展趋势及今后研完方向进行了探讨.","authors":[{"authorName":"张玲","id":"a5f91cd6-dedc-4f4f-8e72-2cbb3eb203fd","originalAuthorName":"张玲"},{"authorName":"彭述明","id":"d6d9d0bf-251e-4977-b7df-05ce26de2f16","originalAuthorName":"彭述明"},{"authorName":"罗顺忠","id":"5c06604c-ed94-4052-a02b-b6d8341a9e34","originalAuthorName":"罗顺忠"},{"authorName":"龙兴贵","id":"31f0e29d-ea5b-4e80-9ef5-d4646da91043","originalAuthorName":"龙兴贵"}],"doi":"","fpage":"79","id":"6a0e9010-e6b2-46fb-b023-73dece380398","issue":"5","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"9883f671-b252-48e4-8442-37fc04907645","keyword":"镁镍基合金","originalKeyword":"镁镍基合金"},{"id":"937eb5d2-35fc-468e-b3d7-a696aa10e26e","keyword":"机械合金化","originalKeyword":"机械合金化"},{"id":"6d03b6c7-13c0-43c6-bc78-aeed2ba2507e","keyword":"纳米晶","originalKeyword":"纳米晶"},{"id":"cc8eab0b-01b5-4e8b-9c61-8f8212b255d4","keyword":"非晶","originalKeyword":"非晶"},{"id":"4634de93-4d67-44db-b011-5728350e3f2f","keyword":"储氢材料","originalKeyword":"储氢材料"}],"language":"zh","publisherId":"cldb200405023","title":"镁-镍基纳米/非晶储氢材料的研究进展及发展趋势","volume":"18","year":"2004"},{"abstractinfo":"具有超结构特征的稀土-镁-镍基贮氢合金作为新一代金属氢化物/镍(MH/Ni)电池负极材料,因其高的放电容量和好的倍率放电性能,是目前贮氢电极合金发展的重点材料之一.本文从材料相结构、贮氢特性和电化学性能之间的关系出发,综述了近年来国内外稀土-镁-镍基AB3型、A2B7型和A5B19型贮氢电极合金的研究进展,为开发兼具高容量和长寿命的新型稀土系贮氢电极合金提供有价值的参考.","authors":[{"authorName":"黄理","id":"580b4862-0250-441a-a001-3de47a204e06","originalAuthorName":"黄理"},{"authorName":"刘永锋","id":"0eb8e54b-9dd5-4267-87c9-abbc5db4d7ee","originalAuthorName":"刘永锋"},{"authorName":"李瑞","id":"3e1d8b1b-203e-417e-84ae-938bb0a4faf1","originalAuthorName":"李瑞"},{"authorName":"高明霞","id":"8e43a263-ad0a-4852-b726-443c98c120db","originalAuthorName":"高明霞"},{"authorName":"潘洪革","id":"40ee267b-642c-4c7f-9b9a-5db7879ca09d","originalAuthorName":"潘洪革"}],"doi":"","fpage":"542","id":"7fab5655-3b2d-474e-9b45-fcf49206eb6b","issue":"3","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"1fc7728d-4b05-4c02-ba29-c01aad6828bf","keyword":"R-Mg-Ni基贮氢合金","originalKeyword":"R-Mg-Ni基贮氢合金"},{"id":"c48a9817-a466-4a8f-8869-ce4d6c5b6b6c","keyword":"相结构","originalKeyword":"相结构"},{"id":"7990685b-780a-4c6c-a1f8-7792472cb779","keyword":"贮氢特性","originalKeyword":"贮氢特性"},{"id":"033909ef-c7ab-4297-b8f0-5d8d4d0881aa","keyword":"电化学性能","originalKeyword":"电化学性能"}],"language":"zh","publisherId":"xyjsclygc201203036","title":"稀土-镁-镍基贮氢电极合金的研究进展","volume":"41","year":"2012"},{"abstractinfo":"镁基合金是一类重要的储氢材料.本文综述了Mg2Ni系合金、稀土-镁-镍、镁-稀土等3类含镁储氢合金的最新研究进展,探讨了合金化机理,即合金化元素、原子半径、相结构对含镁基储氢合金性能的影响规律.","authors":[{"authorName":"童燕青","id":"e615885a-1437-46b0-8635-07538c3d8ddf","originalAuthorName":"童燕青"},{"authorName":"欧阳柳章","id":"bb298660-9d43-4067-9633-081899467581","originalAuthorName":"欧阳柳章"}],"doi":"","fpage":"38","id":"d630a9e1-02ee-47fa-9491-f488622abcea","issue":"5","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"478bac6a-a8bf-4a2c-9d48-cf7665155088","keyword":"储氢合金","originalKeyword":"储氢合金"},{"id":"2227ebe9-4073-4c86-9306-f91b7fff1ef9","keyword":"镁基合金","originalKeyword":"镁基合金"},{"id":"14f35da1-edd9-47c6-9d69-e2fe736fe3bf","keyword":"合金化","originalKeyword":"合金化"}],"language":"zh","publisherId":"jsgncl200905011","title":"镁基储氢合金的最新研究进展","volume":"16","year":"2009"},{"abstractinfo":"镍基高温合金中添加适量Mg使γ′相得到强化,从而降低稳态蠕变速率。部分Mg富集于晶界,提高晶界断裂能,延缓裂纹的产生和发展,延长了蠕变第二、第三阶段的寿命。适量添加Mg使晶界和晶内变形协调良好,提高蠕变塑性,并且使蠕变断裂从楔形裂纹为主的机制转变为空洞裂纹为主的机制。","authors":[{"authorName":"马培立","id":"6a45be5e-d458-4293-b999-c3aa04d2cd89","originalAuthorName":"马培立"},{"authorName":"庄景云","id":"db1db52c-c5de-4b8b-9966-7ba3cb678ba6","originalAuthorName":"庄景云"},{"authorName":"朱静","id":"0613bc33-ad08-4a6c-9104-bbac3f564496","originalAuthorName":"朱静"},{"authorName":"杨锦炎","id":"d9402f46-9f1d-444c-b9f0-1389106e5e24","originalAuthorName":"杨锦炎"},{"authorName":"仲增墉","id":"c6af632d-47e2-4a46-b34e-79e44ad9cc08","originalAuthorName":"仲增墉"},{"authorName":"高良","id":"9ce98245-7599-4550-9b85-bcb5e5556d4d","originalAuthorName":"高良"},{"authorName":"朱金元","id":"6fef0050-45c3-4373-822d-ce5700e41ad9","originalAuthorName":"朱金元"},{"authorName":"浦惠康","id":"3e6009df-8399-45df-b48f-82844d1f5f2e","originalAuthorName":"浦惠康"}],"categoryName":"|","doi":"","fpage":"484","id":"1e50cd02-a00a-4667-aad8-a3706f865275","issue":"6","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[],"language":"zh","publisherId":"0412-1961_1987_6_1","title":"镁对一种镍基高温合金蠕变性能的影响","volume":"23","year":"1987"},{"abstractinfo":" 用碱式碳酸镍作为化学镀液主盐,在T300碳纤维增强AZ91复合材料表面化学镀Ni-P合金层.采用SEM扫描电镜、EDS能谱仪和X射线衍射仪研究镀层的成分和结构.结果表明,经过化学镀Ni-P的复合材料表面有大小均匀连续的胞状凸起,镀层均匀、致密没有缺陷,主要成分是Ni和P,其中Ni为非晶态结构,P含量为8.5%,镀层属于耐腐蚀性能较好的中等磷含量镀层.动电位极化曲线测试表明,化学镀Ni-P处理后复合材料的自腐蚀电位升高250mV,说明化学镀Ni-P层可以明显改善碳纤维增强镁基复合材料的耐腐蚀性能.","authors":[{"authorName":"宋美慧武高辉王春雨田首夫","id":"2ad9b12f-dc09-4e6d-a583-c695c6b9caf8","originalAuthorName":"宋美慧武高辉王春雨田首夫"}],"categoryName":"|","doi":"","fpage":"321","id":"cf1a804b-b739-4117-9740-59fcc9e10db5","issue":"5","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"c524bd83-7161-4921-9f4d-b49bb8672815","keyword":"镁基复合材料","originalKeyword":"镁基复合材料"},{"id":"c274ce2f-8233-422e-9f33-1528454125ed","keyword":"corrosion resistance","originalKeyword":"corrosion resistance"}],"language":"zh","publisherId":"1002-6495_2008_5_8","title":"碳纤维增强镁基复合材料表面化学镀镍Ni-P合金层","volume":"20","year":"2008"},{"abstractinfo":"用碱式碳酸镍作为化学镀液主盐,在T300碳纤维增强AZ91复合材料表面化学镀Ni-P合金层.采用SEM扫描电镜、EDS能谱仪和X射线衍射仪研究镀层的成分和结构.结果表明,经过化学镀Ni-P的复合材料表面有大小均匀连续的胞状凸起,镀层均匀、致密没有缺陷,主要成分是Ni和P,其中Ni为非晶态结构,P含量为8.5%,镀层属于耐腐蚀性能较好的中等磷含量镀层.动电位极化曲线测试表明,化学镀Ni-P处理后复合材料的自腐蚀电位升高250 mV,说明化学镀Ni-P层可以明显改善碳纤维增强镁基复合材料的耐腐蚀性能.","authors":[{"authorName":"宋美慧","id":"64226903-c672-403c-a395-9f2f7228c880","originalAuthorName":"宋美慧"},{"authorName":"武高辉","id":"0e967ba5-774c-4b31-8626-ce16ecc67afa","originalAuthorName":"武高辉"},{"authorName":"王春雨","id":"9be73451-d4ea-4f08-8742-5c7afaf0a004","originalAuthorName":"王春雨"},{"authorName":"田首夫","id":"17fadfd5-ea41-44b1-a761-d8bd71be11d0","originalAuthorName":"田首夫"}],"doi":"10.3969/j.issn.1002-6495.2008.05.003","fpage":"321","id":"04260c7e-5792-419f-889c-091691e8e2d0","issue":"5","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"60d4f85a-7d7e-4135-a858-18262a4960be","keyword":"镁基复合材料","originalKeyword":"镁基复合材料"},{"id":"97807821-f76f-4cd4-ae56-6db3d4442ee0","keyword":"化学镀镍","originalKeyword":"化学镀镍"},{"id":"57f65fbc-80d4-4ba7-a907-1026ad787b3d","keyword":"耐蚀性","originalKeyword":"耐蚀性"}],"language":"zh","publisherId":"fskxyfhjs200805003","title":"碳纤维增强镁基复合材料表面化学镀镍Ni-P合金层","volume":"20","year":"2008"},{"abstractinfo":"采用化学法制备多壁碳纳米管载镍催化剂(Ni/MWNTs),并将其加入到镁粉中,结合氢化燃烧合成(Hydriding Combustion Synthesis,HCS)和机械球磨(Mechanical Milling,MM),即HCS+MM复合技术制备Mg85-Ni经x/MWNTs15-x(x代表质量百分数,x=3,6,9,12)合金.通过X射线衍射仪、透射电子显微镜、扫描电镜以及气体反应控制器研究了材料的晶体结构、微观形貌和吸放氢性能.结果表明:Mg85-Ni9/MWNTs6合金具有最佳综合吸放氢性能,其在373 K,吸氢量达到5.68%(质量分数,下同),且在100 s内就基本达到饱和吸氢量;在523 K,1800 s内的放氢量达到4.31%.Ni/MWNTs催化剂的添加,不但起到催化的作用,而且MWNTs具有优异的纳米限制作用,使得催化剂的粒径限制在纳米级,有利于限制产物中Mg2NiH4颗粒的长大.另外Ni与MWNTs存在协同催化作用,当它们达到一定比例时,对合金的吸放氢促进作用达到最优化,明显改善了合金的吸放氢性能.","authors":[{"authorName":"杨阳","id":"cef597f3-053d-48ac-b4df-1516636b9ee5","originalAuthorName":"杨阳"},{"authorName":"朱云峰","id":"a551a98f-0f8a-4170-b44f-45c790d594ec","originalAuthorName":"朱云峰"},{"authorName":"卫灵君","id":"a039dd15-373c-4e37-a42c-fb03ee3fd9bf","originalAuthorName":"卫灵君"},{"authorName":"宦清清","id":"1ee89ae4-c518-4a48-aea5-6c188bc2510a","originalAuthorName":"宦清清"},{"authorName":"李李泉","id":"28e05259-188a-454a-8445-61eeb66c71d1","originalAuthorName":"李李泉"}],"doi":"","fpage":"1459","id":"94e67d70-a199-4e66-a176-fd721bf4c0ce","issue":"7","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"6d47d4b0-4b5e-4062-b6c0-71ce4b62fab4","keyword":"多壁碳纳米管载镍","originalKeyword":"多壁碳纳米管载镍"},{"id":"f977ee4a-3d2a-424e-88f8-e217862d1ac3","keyword":"镁基合金","originalKeyword":"镁基合金"},{"id":"3ad18268-6f70-48fe-a07a-0bf301f785a8","keyword":"氢化燃烧合成","originalKeyword":"氢化燃烧合成"},{"id":"5e826714-cfbe-47c0-aa37-3ab0b32042ce","keyword":"机械球磨","originalKeyword":"机械球磨"},{"id":"ee72be35-2e72-4862-bece-fb62ad1b19dd","keyword":"储氢性能","originalKeyword":"储氢性能"}],"language":"zh","publisherId":"xyjsclygc201307029","title":"多壁碳纳米管载镍对镁基合金储氢性能影响","volume":"42","year":"2013"},{"abstractinfo":"综述了镁基贮氢合金制备方法的研究进展,对熔炼法、机械合金化法、扩散法、氢化燃烧法、表面处理等几种主要制备镁基贮氢合金的方法的制备过程、影响因素、特点、优缺点等作了阐述,并论述了目前国内外采用不同制备方法所制得的部分镁基贮氢合金的充放氢性能和电化学性能.","authors":[{"authorName":"韩晓英","id":"3338190a-c5cd-419c-8d8f-bd1e037f92f3","originalAuthorName":"韩晓英"},{"authorName":"张羊换","id":"f45a2e85-485c-4ffa-8a3f-28df98e796fd","originalAuthorName":"张羊换"},{"authorName":"王新林","id":"72c67192-f5cb-4125-b9bf-04867c6f8dea","originalAuthorName":"王新林"},{"authorName":"董小平","id":"a4f682c4-be5b-4143-9fcf-022a56d5f232","originalAuthorName":"董小平"},{"authorName":"王国清","id":"9be984aa-94a1-411e-9c2a-2c81cd58a2e9","originalAuthorName":"王国清"},{"authorName":"任江远","id":"913b2fba-0eef-4d26-8c80-763a79f8adcb","originalAuthorName":"任江远"}],"doi":"10.3969/j.issn.1005-8192.2005.06.008","fpage":"32","id":"ee799d5d-9e12-48c4-9728-477d6cd40f5e","issue":"6","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"3023b3a7-ac1b-4321-aff8-15f9303168eb","keyword":"镁基贮氢合金","originalKeyword":"镁基贮氢合金"},{"id":"1961c199-3ff6-4b28-9c61-08d7ef80d0a6","keyword":"制备方法","originalKeyword":"制备方法"},{"id":"c596865b-5813-4e2e-8b13-49d0489c8016","keyword":"充放氢性能","originalKeyword":"充放氢性能"},{"id":"aeeca1b5-5a51-4f2b-86a5-020f5a004010","keyword":"电化学性能","originalKeyword":"电化学性能"}],"language":"zh","publisherId":"jsgncl200506008","title":"镁基贮氢合金的制备","volume":"12","year":"2005"},{"abstractinfo":"建立了EDTA络合滴定法测定镍镁合金中镍和镁含量的分析方法.试样以硝酸、滴加盐酸溶解,分取一定体积的试液,加柠檬酸掩蔽铁离子,以丁二酮肟沉淀镍,用硝酸和高氯酸破坏沉淀剂,以紫脲酸铵作指示剂,用EDTA标准溶液滴定镍含量;同时,另取部分试液,以铜试剂预先分离镍基体,并以盐酸羟胺、氰化钾、三乙醇胺等掩蔽剩余干扰离子,以铬黑T为指示剂,用EDTA标准溶液滴定镁含量.对沉淀剂进行探讨,结果表明,测定镍时,加沉淀剂丁二酮肟与其络合沉淀,选择性好;而测定镁时,选择铜试剂络合沉淀基体镍和其他干扰离子,滤液可直接用于镁离子的测定,干扰少.对镍镁合金样品中镍、镁含量进行多次平行测定,相对标准偏差(RSD,n=6)分别为0.23%~0.57%和0.76%~0.90%.并模拟镍镁合金的主要成分及含量合成试样溶液进行测定,结果与理论值一致.将方法应用于镍镁合金实际样品分析,结果与参照方法结果一致.","authors":[{"authorName":"陆娜萍","id":"31eccb7e-5d98-4b0a-97f2-b24afb4a2799","originalAuthorName":"陆娜萍"},{"authorName":"年季强","id":"f3d99f1e-4f51-43cd-871d-a22502ffadc4","originalAuthorName":"年季强"},{"authorName":"张良芬","id":"b52e3e10-44ce-40ad-b089-7d873cbbdfb8","originalAuthorName":"张良芬"},{"authorName":"顾锋","id":"1b2be1be-241b-45a2-a434-1206e2b67e86","originalAuthorName":"顾锋"}],"doi":"10.13228/j.boyuan.issn1000-7571.009604","fpage":"62","id":"cc64275d-ddd7-4937-93a3-a20866a6689a","issue":"1","journal":{"abbrevTitle":"YJFX","coverImgSrc":"journal/img/cover/YJFX.jpg","id":"71","issnPpub":"1000-7571","publisherId":"YJFX","title":"冶金分析 "},"keywords":[{"id":"64b29f8d-6631-4010-afb9-c9753f3ed2b3","keyword":"镍镁合金","originalKeyword":"镍镁合金"},{"id":"ad14f800-bad9-4084-8487-66be25a73f21","keyword":"镍","originalKeyword":"镍"},{"id":"d150dcdf-ae40-4ada-967f-8e3ed9c4d5fc","keyword":"镁","originalKeyword":"镁"},{"id":"e2ed88ce-949b-466e-be21-226484190c03","keyword":"乙二胺四乙酸二钠(EDTA)","originalKeyword":"乙二胺四乙酸二钠(EDTA)"},{"id":"93c35433-f563-4f53-b130-c6c217f18d8c","keyword":"滴定法","originalKeyword":"滴定法"}],"language":"zh","publisherId":"yjfx201601012","title":"EDTA滴定法测定镍镁合金中镍和镁","volume":"36","year":"2016"},{"abstractinfo":"贮氢材料的发展是氢能利用的关键技术,作为新型贮氢材料-镁基贮氢合金,由于其具有超高理论电化学容量的优势而受到全世界瞩目.本文阐述了镁基贮氢合金的电化学性能特点,介绍了镁基贮氢合金成分设计及制备工艺的国内外现状,指出了未来镁基贮氢合金应用研究的重点.","authors":[{"authorName":"张羊换","id":"a4334fe1-e1ce-4301-b1fb-1ed231c2a612","originalAuthorName":"张羊换"},{"authorName":"董小平","id":"6df0fd35-6616-4101-8dc3-d0d2e1ebe18b","originalAuthorName":"董小平"},{"authorName":"王国清","id":"6b642237-9d16-4054-a448-9a51bc11f5a7","originalAuthorName":"王国清"},{"authorName":"郭世海","id":"45d11c14-dc05-49c8-a031-182cb2a06c1d","originalAuthorName":"郭世海"},{"authorName":"祁焱","id":"1672e450-36c3-431c-b351-5540c255c054","originalAuthorName":"祁焱"},{"authorName":"王新林","id":"654424ce-8e1d-4c50-90a9-4eb8ae839d89","originalAuthorName":"王新林"}],"doi":"10.3969/j.issn.1005-8192.2004.03.008","fpage":"26","id":"e91e5b70-5a49-45f5-a011-2cf726d17605","issue":"3","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"f105bb78-c384-45c1-9261-202392ca87d5","keyword":"镁基贮氢合金","originalKeyword":"镁基贮氢合金"},{"id":"c2c38047-d454-44f6-a117-d343cd34158b","keyword":"成分设计","originalKeyword":"成分设计"},{"id":"43472f77-a549-4b3a-a43c-563dabc9b9ea","keyword":"制备工艺","originalKeyword":"制备工艺"},{"id":"3e1b68ad-8be1-4820-a149-8138728cf553","keyword":"电化学性能","originalKeyword":"电化学性能"}],"language":"zh","publisherId":"jsgncl200403008","title":"镁基贮氢合金的研究及发展","volume":"11","year":"2004"}],"totalpage":5771,"totalrecord":57704}