{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"摘要:在室温下,分别利用常规磁控溅射和反应磁控溅射技术交替沉积Si薄膜和Si1-xNx薄膜在单晶硅基体上制备了Si/Si1-xNx纳米多层膜。接下来,在高温下对Si/Si1-xNx多层膜进行退火诱发各层中形成硅纳米晶。研究了Si1-xNx层厚度和N2流量沉积对si/Si1-xNx多层膜中Si量子点形成的影响。TEM检测结果表明,N2流量为2.5mL/min时沉积的多层膜退火后形成了尺寸为20-30nm的等轴Si3N4纳米晶;N2流量为5.0mL/min时沉积的多层膜退火后在Si层和Si1-xNx层中均形成了硅纳米晶,而在7.5mL/min N2流量下沉积的Si/Si1-xNx多层膜退火后仅在Si层中形成了硅纳米晶。","authors":[{"authorName":"赵志明","id":"7682c128-dfe2-480c-8cb4-6c31e420a397","originalAuthorName":"赵志明"},{"authorName":"马二云","id":"cc8b509b-4cbf-4e3d-adf5-0edf62c74964","originalAuthorName":"马二云"},{"authorName":"晓静","id":"6dd7da4d-03fe-4bf6-bf4a-6a86c64b7e58","originalAuthorName":"张晓静"},{"authorName":"田亚萍","id":"ea618b28-4a0e-4208-91b5-ed461a865176","originalAuthorName":"田亚萍"},{"authorName":"屈直","id":"8cb4aeb6-c721-4e35-8545-749721db050d","originalAuthorName":"屈直"},{"authorName":"百穹","id":"d04a3ca5-2476-4902-a7bc-93dd5122d62b","originalAuthorName":"百穹"},{"authorName":"曹智睿","id":"ada3b74a-9f7a-4040-aebb-430687fb46b4","originalAuthorName":"曹智睿"},{"authorName":"白力静","id":"7b64b659-3865-4134-8786-3f9e307c0f50","originalAuthorName":"白力静"},{"authorName":"国君","id":"debdc9f3-7a93-4f62-92eb-439991a97121","originalAuthorName":"张国君"},{"authorName":"蒋百灵","id":"74f81075-f0cd-4bbd-9d24-dab67f7f0042","originalAuthorName":"蒋百灵"}],"doi":"","fpage":"732","id":"2ae99329-80cd-44f5-bab6-f1321194fd35","issue":"6","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"749e0b09-5700-4100-b95c-8bef1507b6a2","keyword":"磁控溅射技术","originalKeyword":"磁控溅射技术"},{"id":"2ce35b28-2bd7-48b3-b7bf-7a7914fda99f","keyword":"Si/Si1-xNx多层膜","originalKeyword":"Si/Si1-xNx多层膜"},{"id":"f01e1ec2-026f-4f8a-84c0-3a0d138d88d8","keyword":"Si纳米晶","originalKeyword":"Si纳米晶"},{"id":"b0fa2f08-41fa-4c60-9f53-e761dee758ad","keyword":"Si3N4纳米晶","originalKeyword":"Si3N4纳米晶"},{"id":"519e49ae-ad6d-427c-b2c5-1ba6b7e0cad5","keyword":"TEM","originalKeyword":"TEM"}],"language":"zh","publisherId":"gncl201206015","title":"磁控溅射技术制备硅纳米晶多层膜及微观结构表征","volume":"43","year":"2012"},{"abstractinfo":"借助扫描电镜(SEM)原位拉伸观察了纯钼退火态纤维状组织断裂过程中裂纹萌生与扩展的动态变化过程,对其微观断裂特征进行了研究.结果表明:加载初期,裂纹在与最大主应力平面成45°的位置萌生,随后逐渐张开并钝化;加载中期,新的裂纹在钝化的主裂纹前方某处萌生.随着载荷增加,裂纹呈\"Z\"字形相互连接;加载末期,裂纹失稳扩展,试样断裂.在裂尖应力场作用下,裂纹扩展遵循钝化-萌生-钝化的循环方式.纯钼试样断裂后,沿厚度方向有明显的颈缩,断口表面呈薄层状纤维撕裂,并伴有剪切唇和韧窝的出现,呈延性断裂特征.","authors":[{"authorName":"牛荣梅","id":"0916d5dc-b6e2-41de-aab5-b8d7b30953f8","originalAuthorName":"牛荣梅"},{"authorName":"国君","id":"9cca4046-9142-415b-9373-cade6d8a31c5","originalAuthorName":"张国君"},{"authorName":"孙军","id":"e5312f8a-8af2-4cf6-903a-0951886f49f6","originalAuthorName":"孙军"},{"authorName":"魏建峰","id":"744f48b3-a417-42a2-9326-206f4e10fa0a","originalAuthorName":"魏建峰"},{"authorName":"孙院军","id":"5928731f-af25-4283-aa9b-3d09b19f28dc","originalAuthorName":"孙院军"},{"authorName":"赵宝华","id":"36c3febb-673e-496b-9b2c-e9364f5c67cb","originalAuthorName":"赵宝华"},{"authorName":"杨刘晓","id":"4d9d8c09-7a18-4354-ab1a-47376ea2d327","originalAuthorName":"杨刘晓"},{"authorName":"马保平","id":"07e6bc24-df79-41a1-8b27-881941d0c974","originalAuthorName":"马保平"}],"doi":"","fpage":"559","id":"97dc5358-6ce7-47aa-bf22-5ebaea90614c","issue":"4","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"3954e888-d6a7-4563-9bf8-aed63db7f663","keyword":"纯钼","originalKeyword":"纯钼"},{"id":"50e463f8-8e45-4fd2-9256-3a4087ea0709","keyword":"SEM 原位观察","originalKeyword":"SEM 原位观察"},{"id":"a39f6d1c-1a99-414e-a11f-cb1a54b75aae","keyword":"微裂纹","originalKeyword":"微裂纹"}],"language":"zh","publisherId":"xyjsclygc200604012","title":"纯钼微观断裂过程的扫描电镜原位观察","volume":"35","year":"2006"},{"abstractinfo":"使用粉末冶金工艺制备了不同体积分数稀土氧化镧颗粒掺杂的钼合金.观察了该合金的显微组织并测试了其力学性能.结果表明,稀土氧化镧掺杂钼合金由于其细小的氧化镧颗粒和细小的晶粒的作用而具有较高的屈服强度.对稀土氧化镧掺杂钼合金强化机制的分析结果表明,钼合金的屈服强度主要来源于三个部分:变形前基体强度、细小稀土氧化镧颗粒贡献的强度和细小钼合金晶粒贡献的强度,并给出了稀土氧化镧掺杂钼合金屈服强度与稀土氧化镧颗粒尺寸、体积分数以及晶粒尺寸之间的定量解析关系.","authors":[{"authorName":"国君","id":"2aea7236-7fe4-4a55-9e0f-3329ab8079ed","originalAuthorName":"张国君"},{"authorName":"孙院军","id":"5e5b3d1f-5fee-46b3-9129-e67822f17613","originalAuthorName":"孙院军"},{"authorName":"牛荣梅","id":"3d4eb52e-ac6e-40f2-b619-a3410c318c60","originalAuthorName":"牛荣梅"},{"authorName":"孙军","id":"477f951c-8731-40d1-ad28-3bdc1db7edfa","originalAuthorName":"孙军"},{"authorName":"魏建峰","id":"62b1b460-5f03-4e94-a21f-b5f09c784111","originalAuthorName":"魏建峰"},{"authorName":"栾永刚","id":"fc607a95-a9ca-46bd-b1a0-e5709249ffa8","originalAuthorName":"栾永刚"},{"authorName":"赵宝华","id":"2e9dfb7c-248a-40c8-ae7a-fbf4cc67af2b","originalAuthorName":"赵宝华"},{"authorName":"杨刘晓","id":"5f3f30ec-9b94-4853-bb05-9a4664154043","originalAuthorName":"杨刘晓"},{"authorName":"马保平","id":"b12fd040-06f3-462c-9317-585cfaf251cb","originalAuthorName":"马保平"}],"doi":"","fpage":"1926","id":"c0bb81fd-949d-4319-a9e3-3ca49f87fc17","issue":"12","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"4134aa1e-dc05-47d1-96f7-bcafcd79e1e3","keyword":"氧化镧颗粒","originalKeyword":"氧化镧颗粒"},{"id":"1555322c-2ab3-4eeb-8072-a268b5afd9ff","keyword":"掺杂钼合金","originalKeyword":"掺杂钼合金"},{"id":"b47fc91f-b08b-4d24-bdf0-09a07d7cc609","keyword":"强化机制","originalKeyword":"强化机制"}],"language":"zh","publisherId":"xyjsclygc200512020","title":"稀土氧化镧掺杂钼合金的强化机制研究","volume":"34","year":"2005"},{"abstractinfo":"传统方法制备的稀土氧化物弥散强化钼合金(ODS钼合金)强度有限且塑性较差,导致其变形深加工能力不足,严重制约了其工业应用.分析了ODS钼合金制备工艺-微观组织-力学性能之间的因果关系,提出了铝合金纳米掺杂强韧化的新思路,即纳米尺度稀土氧化物颗粒均匀弥散分布在细晶钼基体晶粒内部、同时部分颗粒分布在晶界上的多层级微观结构优化原则,发展了制备该类新型钼合金的液液掺杂方法,所得到的高性能钼合金在拉伸屈服强度达到800 MPa量时,拉伸延伸率仍近40%,与传统方法制备的ODS钼合金相比,屈服强度提高了约15%,拉伸延伸率提高了逾160%,实现了强度和延性的同步提升.进一步建立了强韧化理论模型,对强度和延性的改善进行了量化描述.这种高性能钼合金由于力学性能优异、加工性能好,已获得了工业应用,其微观组织调控原则以及制备方法对其它难熔金属结构材料的高性能化同样具有借鉴意义.","authors":[{"authorName":"刘刚","id":"d2317546-6a8f-4db7-880f-f318a514010a","originalAuthorName":"刘刚"},{"authorName":"国君","id":"06a05ddc-9bfa-4a97-9cbb-ef3c7878779c","originalAuthorName":"张国君"},{"authorName":"江峰","id":"978cad07-b918-4485-9e5f-04b859e1790e","originalAuthorName":"江峰"},{"authorName":"丁向东","id":"79e9064d-2365-4fab-a257-1a92ebae5316","originalAuthorName":"丁向东"},{"authorName":"孙院军","id":"e6d00dee-ce6c-4bee-bd4e-2e84502f215d","originalAuthorName":"孙院军"},{"authorName":"王林","id":"1eafb981-1918-4674-8c62-6cb4482777e3","originalAuthorName":"王林"},{"authorName":"罗建海","id":"77876876-1af8-4ae0-989e-74fb47950f9e","originalAuthorName":"罗建海"},{"authorName":"孙军","id":"701113ff-23e6-4da0-b4e5-bd68b5143c39","originalAuthorName":"孙军"}],"doi":"10.7502/j.issn.1674-3962.2016.03.06","fpage":"205","id":"bfb4b8b8-ebcd-42c4-a551-4c6649929d32","issue":"3","journal":{"abbrevTitle":"ZGCLJZ","coverImgSrc":"journal/img/cover/中国材料进展.jpg","id":"80","issnPpub":"1674-3962","publisherId":"ZGCLJZ","title":"中国材料进展"},"keywords":[{"id":"452b5eba-6355-4cf3-9aba-3393cfe73ed2","keyword":"钼合金","originalKeyword":"钼合金"},{"id":"1856eb58-ca83-46a1-b8ec-668e1d8e5a97","keyword":"强韧化","originalKeyword":"强韧化"},{"id":"1b82aab5-6a74-45eb-9149-86be9c36bf59","keyword":"纳米稀土氧化物","originalKeyword":"纳米稀土氧化物"},{"id":"8b4ee6d9-5bdb-438e-8291-41f0dc9bb419","keyword":"液液掺杂","originalKeyword":"液液掺杂"},{"id":"259e6240-2722-40a9-9d4f-7a52fcd8d5ca","keyword":"多层级微观结构","originalKeyword":"多层级微观结构"},{"id":"392de0fb-a7fd-416c-940c-c7f380790410","keyword":"高延性","originalKeyword":"高延性"}],"language":"zh","publisherId":"zgcljz201603006","title":"高性能钼合金的微观组织设计制备与性能优化","volume":"35","year":"2016"},{"abstractinfo":"基于疲劳裂纹尖端的应力和应变以及高强铝合金中不同尺度第二相性态对其延性的影响,建立了高强铝合金中粗大第二相、中间尺度第二相以及细小时效强化相性态与其疲劳裂纹扩展速率之间的多元非线性关系模型.结果表明:对于2024铝合金的疲劳扩展速率,该模型的预测趋势与他人的实验研究结果吻合良好.同时借助于对该模型的理论分析,提出了在确保高强铝合金强度不降低的前提下降低其疲劳裂纹扩展速率的优化方案.","authors":[{"authorName":"国君","id":"71103e76-6f9f-4351-93b3-d8279f13c739","originalAuthorName":"张国君"},{"authorName":"刘刚","id":"1c96b2b6-e917-4839-aa06-2a4c71c85b26","originalAuthorName":"刘刚"},{"authorName":"丁向东","id":"3d43dcdf-650d-45b5-8074-85793951074b","originalAuthorName":"丁向东"},{"authorName":"孙军","id":"c630382f-6f15-4c67-93d3-04814bc00231","originalAuthorName":"孙军"},{"authorName":"佟振峰","id":"01f2398e-88f7-4e5d-bec5-d95bd105dfb6","originalAuthorName":"佟振峰"},{"authorName":"邵跃锋","id":"8a3c9b25-b53f-4b7a-bf91-29ee6f2cbb5c","originalAuthorName":"邵跃锋"},{"authorName":"陈康华","id":"9dae8df5-32f5-4919-9442-87d7a1cd1cd6","originalAuthorName":"陈康华"}],"doi":"","fpage":"35","id":"5a7cf9d1-7248-4ee2-82db-07569b2adef8","issue":"1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"97ca0541-daba-47de-8d10-0f3d82d56b72","keyword":"铝合金","originalKeyword":"铝合金"},{"id":"8ca565ec-2a31-4aa4-9a9d-9eb0bd505047","keyword":"第二相","originalKeyword":"第二相"},{"id":"3db6c8ea-de62-4e61-a8f7-23182dcf82ab","keyword":"疲劳裂纹扩展速率","originalKeyword":"疲劳裂纹扩展速率"},{"id":"6c84b1db-b28d-4cb0-b641-875a9ed1b696","keyword":"模型","originalKeyword":"模型"}],"language":"zh","publisherId":"xyjsclygc200401009","title":"含有第二相的高强铝合金疲劳模型","volume":"33","year":"2004"},{"abstractinfo":"利用磁控溅射技术在Sode-lime玻璃衬底上沉积CIGS薄膜太阳能电池用金属Mo背电极薄膜,并研究了Mo靶功率、基片脉冲宽度以及预清洗时间对Mo薄膜的相结构、形貌及电阻率的影响.结果表明,沉积的Mo薄膜均沿(110)晶面呈柱状择优生长;增大Mo靶溅射功率可以促进薄膜晶粒长大、提高薄膜的致密性、降低电阻率;合适的基片脉冲电压脉宽促进了晶核的形成、长大并有助于沉积过程中Mo晶粒长大,进而降低薄膜电阻率;通过延长预清洗时间可获得致密性好、电阻率低的Mo薄膜,所获得的Mo薄膜最低电阻率为3.5×10-5Ω·cm.","authors":[{"authorName":"赵志明","id":"d4f85744-130a-49ae-8af8-73e3a021f9cd","originalAuthorName":"赵志明"},{"authorName":"丁宇","id":"cd3ecd14-2edc-446d-bcbd-3cf6ae03fd9d","originalAuthorName":"丁宇"},{"authorName":"曹智睿","id":"045ea95f-0b86-4ad9-b7be-9392c5f4e475","originalAuthorName":"曹智睿"},{"authorName":"田亚萍","id":"af299c14-7dfa-4982-a207-bc792cf68bec","originalAuthorName":"田亚萍"},{"authorName":"屈直","id":"60c24c55-3698-4ab4-aa15-06c42ce8657a","originalAuthorName":"屈直"},{"authorName":"国君","id":"fa7a0500-81af-40dc-9a15-299fc9a0fe4b","originalAuthorName":"张国君"},{"authorName":"蒋百灵","id":"32582981-bbce-4637-b20e-47cf9864b088","originalAuthorName":"蒋百灵"}],"doi":"","fpage":"74","id":"5cbd9c1f-18d3-4aec-a265-effa251decd5","issue":"12","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"651960dd-a378-4b4b-857a-21f5cefc4696","keyword":"Mo薄膜","originalKeyword":"Mo薄膜"},{"id":"31f246a8-e4c9-4aad-af6e-4e48a1bb88cc","keyword":"磁控溅射","originalKeyword":"磁控溅射"},{"id":"2d722239-b52b-4caa-bb57-d6f42c6c8f18","keyword":"XRD","originalKeyword":"XRD"},{"id":"e36a28ca-bc9c-4a42-835a-d7b06e4daaeb","keyword":"SEM","originalKeyword":"SEM"}],"language":"zh","publisherId":"cldb201112021","title":"CIGS薄膜太阳能电池用Mo背电极的制备与结构性能研究","volume":"25","year":"2011"},{"abstractinfo":"利用对靶磁控溅射交替沉积技术在不同Co靶电流下沉积Co/AZO纳米复合薄膜,并对其进行真空退火.研究了Co靶电流对薄膜的结构及光学性能的影响.结果表明,沉积态薄膜晶化程度随Co靶电流增加而降低,未发现Co的相关衍射峰;真空退火后,薄膜结晶性明显改善,0.3 A薄膜中出现了Co纳米颗粒,当Co靶电流增大到0.5A时还发现了CoO纳米颗粒.UV-Vis光谱显示薄膜透过率随Co靶电流增加而降低,退火后透过率明显提高;光谱中还出现了高自旋态Co2+(d7)电子跃迁的3个特征吸收峰,0.2A薄膜中尤其显著.","authors":[{"authorName":"赵志明","id":"8f35b604-2a81-48e2-a3ba-a3313cea5d5e","originalAuthorName":"赵志明"},{"authorName":"晓静","id":"3636ffac-8412-47eb-92e1-665661df5d73","originalAuthorName":"张晓静"},{"authorName":"马二云","id":"ebf1da85-8fba-43d2-b423-c992a84950b1","originalAuthorName":"马二云"},{"authorName":"白力静","id":"1ef16c96-1182-43a4-8bf9-173cb567820d","originalAuthorName":"白力静"},{"authorName":"国君","id":"974b19a2-74f3-4f1a-88c0-c1882d836743","originalAuthorName":"张国君"},{"authorName":"游才印","id":"eb41a801-0c73-4983-81fc-f8ea25aab91a","originalAuthorName":"游才印"},{"authorName":"蒋百灵","id":"3f5afdc5-6e02-47d2-b67c-70ddc0fef005","originalAuthorName":"蒋百灵"}],"doi":"","fpage":"145","id":"6cf01da9-3b39-44a9-839d-ba15ad23a081","issue":"1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"05262795-f696-4677-aa4f-c281179bf6d6","keyword":"Co/AZO纳米复合薄膜","originalKeyword":"Co/AZO纳米复合薄膜"},{"id":"baa0cdf5-c58f-4342-8fa6-8f529f69c6bf","keyword":"微观结构","originalKeyword":"微观结构"},{"id":"bc6ee538-5c54-4448-a4cb-d75183c80534","keyword":"光学性能","originalKeyword":"光学性能"},{"id":"479ad2fd-b667-4f9d-8e1a-191cfd8497b9","keyword":"交替沉积","originalKeyword":"交替沉积"},{"id":"0ed35ee9-0104-443e-b813-87eb07eb0ad8","keyword":"磁控溅射","originalKeyword":"磁控溅射"}],"language":"zh","publisherId":"xyjsclygc201401028","title":"磁控溅射Co/AZO纳米复合薄膜的结构及光学性能","volume":"43","year":"2014"},{"abstractinfo":"利用反应磁控溅射和常规磁控溅射方法交替沉积了NiO/Ni纳米多层膜,研究了不同退火环境下多层膜的相结构、微观结构演化及光电性能.XRD和TEM结果表明,沉积态薄膜呈现明显的NiO和Ni交替多层结构;大气退火的NiO/Ni多层膜被氧化成沿(ll1)晶面择优生长的NiO薄膜;而真空退火的NiO/Ni薄膜仍然保持着明显的多层结构,各层膜的结晶程度提高.沉积态和真空退火态的NiO/Ni多层膜呈现低可见光透过率和低电阻率的特点,电阻率达到10-5Q·cm数量级;大气退火的NiO/Ni多层膜呈现49.3%可见光平均透过率和高的电阻特性.","authors":[{"authorName":"赵志明","id":"4064d018-6bc3-46f0-acba-159d1456eb2e","originalAuthorName":"赵志明"},{"authorName":"马二云","id":"d14c86e9-fa59-4652-8c0f-3e5b2762d1c0","originalAuthorName":"马二云"},{"authorName":"晓静","id":"226a5903-ad53-4b7d-b858-fef4b5402ea8","originalAuthorName":"张晓静"},{"authorName":"国君","id":"d57ce722-57b4-4990-ab2d-25a60e396cc4","originalAuthorName":"张国君"},{"authorName":"游才印","id":"733bf30c-9258-4637-9f14-d1e8a18e85ad","originalAuthorName":"游才印"},{"authorName":"白力静","id":"b54678fe-8eda-4ef0-aec7-031fa1ae8e6a","originalAuthorName":"白力静"},{"authorName":"蒋百灵","id":"ef23d049-5bcd-4555-8f8b-bb4ddd7bc690","originalAuthorName":"蒋百灵"}],"doi":"","fpage":"1732","id":"75c99ec3-2186-45c7-b747-65f0c566e390","issue":"7","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"131caab9-34a6-47c2-af77-68725b043899","keyword":"NiO/Ni纳米多层膜","originalKeyword":"NiO/Ni纳米多层膜"},{"id":"4c8a5ff1-3cf8-4bfe-adbe-3ce0c23d04ab","keyword":"微观结构","originalKeyword":"微观结构"},{"id":"99c7c230-6d25-481b-ab8b-c60c6cbb2761","keyword":"光电性能","originalKeyword":"光电性能"},{"id":"5d18b7c0-c753-4dc5-aef5-548c90536589","keyword":"磁控溅射","originalKeyword":"磁控溅射"}],"language":"zh","publisherId":"xyjsclygc201407039","title":"磁控溅射制备NiO/Ni多层膜的结构和光电性能","volume":"43","year":"2014"},{"abstractinfo":"采用SEM和XRD法,分析了磁控溅射CrTiAlN梯度镀层的表面与断口形貌及其相组成随加热温度的变化规律.研究表明:CrTiAlN镀层在600℃之前物相和组织结构保持稳定,随后的升温过程中有相变行为,随着温度的升高,物相由以致密的非晶态物质为主,依次出现CrN、Cr2O3相和AlN等物相;相变的发生有利于镀层保持高温硬度和结合力.加热至900℃时,尽管在镀层表面观察到微区融化现象,但膜基结合紧密;加热至1100℃时镀层表面出现开裂并伴有剥落现象.从温度对镀层的氧化形貌及物相、组织转变机理分析,CrTiAlN梯度镀层在≤900℃时有良好的热稳定性.","authors":[{"authorName":"白力静","id":"6bb649b1-a580-4256-a905-2373b06f2f59","originalAuthorName":"白力静"},{"authorName":"蒋百灵","id":"6755bebf-5204-4a13-9420-d00dc2612de2","originalAuthorName":"蒋百灵"},{"authorName":"文晓斌","id":"5b621b78-0240-486d-a48a-5a0383f41988","originalAuthorName":"文晓斌"},{"authorName":"国君","id":"e710ad03-c3c2-4ae9-9f42-64b462ac2c9e","originalAuthorName":"张国君"},{"authorName":"何家文","id":"13262700-415b-4982-aa96-b750a4c6c73d","originalAuthorName":"何家文"}],"doi":"10.3969/j.issn.1009-6264.2005.04.028","fpage":"111","id":"095e2137-4c34-4f51-9281-0f4ae4b70036","issue":"4","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"6d836b94-21d2-43c9-afd2-84be863e1ef9","keyword":"氧化","originalKeyword":"氧化"},{"id":"cff29909-22a9-4bd5-b202-eedb7a1563b4","keyword":"磁控溅射","originalKeyword":"磁控溅射"},{"id":"d53bde70-a98f-4f38-b6b3-af0ff08dc0a2","keyword":"梯度镀层","originalKeyword":"梯度镀层"}],"language":"zh","publisherId":"jsrclxb200504028","title":"热氧化温度对磁控溅射CrTiAlN梯度镀层表面形貌与组织结构的影响","volume":"26","year":"2005"},{"abstractinfo":"采用透射电子显微镜动态拉伸技术对氧化镧弥散强化钼合金的裂纹扩展过程进行原位观察.发现裂纹的扩展模式受基体晶粒尺寸与氧化镧颗粒的形状和尺寸影响.裂纹尖端遇到非常细小的晶粒时会发生沿晶界扩展;裂纹尖端遇到棒状微米级粗大氧化镧颗粒时,裂纹穿过氧化镧颗粒扩展;遇到椭球状亚微米级氧化镧颗粒时,裂纹越过氧化镧颗粒扩展,并发生裂纹扩展方向的偏转;而当裂纹扩展到细小的球状纳米级氧化镧颗粒时会被阻止,裂纹以\"Z\"字型或跨接的方式继续扩展.根据实验结果从裂纹扩展方式和能量耗散角度对氧化镧弥散钼合金的细晶增韧和颗粒增韧机制进行分析和讨论.","authors":[{"authorName":"国君","id":"ca830ce2-88b7-4939-a2b6-8c00f5de3fe7","originalAuthorName":"张国君"},{"authorName":"刘刚","id":"c55fb8d3-50b5-4f29-bf5a-16fc49c0e218","originalAuthorName":"刘刚"},{"authorName":"孙院军","id":"36a0eb5c-9132-488b-9dca-311157f5a192","originalAuthorName":"孙院军"},{"authorName":"孙军","id":"9c3b412e-d54c-4a32-ba1e-6480577a0d4f","originalAuthorName":"孙军"}],"doi":"","fpage":"828","id":"15bfa9cc-623e-4ac1-9fbd-bc8ffd7d1d71","issue":"5","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"30c639c1-da9a-49dc-a89e-9b653b439488","keyword":"钼合金","originalKeyword":"钼合金"},{"id":"869f960c-691d-4352-8866-e890b760cad2","keyword":"裂纹扩展","originalKeyword":"裂纹扩展"},{"id":"4840a792-d5b1-454d-8da1-e521b6958cf0","keyword":"原位拉伸","originalKeyword":"原位拉伸"},{"id":"1f45a4b0-54cb-4841-b242-b983ae2c9c1b","keyword":"透射电子显微镜","originalKeyword":"透射电子显微镜"}],"language":"zh","publisherId":"xyjsclygc201005017","title":"氧化镧弥散强化钼合金裂纹扩展的TEM原位观察","volume":"39","year":"2010"}],"totalpage":23,"totalrecord":225}