蒋湘芬
,
王学斌
,
沈丽明
,
吴强
,
王秧年
,
马延文
,
王喜章
,
胡征
催化学报
doi:10.1016/S1872-2067(15)61117-2
高性能低成本的担载型铂基催化剂是直接甲醇燃料电池(DMFC)实用化过程中的一大挑战.利用高比表面积、高稳定性、容易负载金属的载体实现 Pt颗粒的高度分散,既可提高催化剂的催化性能,又可提高 Pt的利用率以降低成本,是担载型 Pt基催化剂实用化的有效途径.碳材料是一种常用的催化剂载体,近年来我们课题组发展了一种高性能的碳纳米笼材料,并可通过异原子掺杂调变其表面性能,提高其活性和负载能力.我们采用原位氧化镁模板法制备氮掺杂碳纳米笼:以具有多级结构的碱式碳酸镁作为氧化镁模板的前体,吡啶为碳源和氮源,经高温热解沉积,在原位形成的氧化镁模板表面形成氮掺杂的石墨化碳纳米薄层;经稀盐酸浸泡并洗涤,获得高纯度的氮掺杂碳纳米笼.氮掺杂碳纳米笼具有分等级的微纳米结构、高导电性、高比表面积和可调变的孔结构,结合表面氮原子的锚钉作用,氮掺杂碳纳米笼有望成为电化学催化剂 Pt的优良载体.
在前期研究基础上,本文探索多级结构氮掺杂碳纳米笼(hNCNC)作为新型载体负载 Pt的能力,并评价所构建的负载型催化剂 Pt/hNCNC的电催化性能.通过简便的微波辅助多元醇还原法,将氯铂酸还原成 Pt纳米粒子负载于 hNCNC的表面.为了揭示氮掺杂的效应,我们对比研究了具有相似分级结构但无掺杂的碳纳米笼(hCNC)以及商业化活性炭(Val-can XC-72)作为载体的情况.经热重(TG)和 X射线光电子能谱(XPS)分析,三种催化剂 Pt/hNCNC、Pt/hCNC和 Pt/XC-72的负载量均接近理论负载量(23.1 wt%),都主要以金属态存在.然而,扫描电子显微镜(SEM)和透射电子显微镜(TEM)结果表明, Pt/hNCNC的 Pt分散状态优于 Pt/hCNC,更远优于 Pt/XC-72. Pt/hNCNC的平均 Pt粒径最小,仅约3.3 nm.这种良好的分散状态主要得益于氮原子掺杂,高负电性的氮原子改变了局域的表面极性,有利于 Pt颗粒的成核,也有利于固定 Pt颗粒.
由于 hNCNC对 Pt的优异分散能力, Pt/hNCNC表现出高的电化学活性面积.氢吸附和一氧化碳溶出伏安曲线表明, Pt/hNCNC的电化学活性面积高于 Pt/hCNC和 Pt/XC-72,这与显微观察和 X射线衍射(XRD)结果相吻合. Pt/hNCNC展现出优异的甲醇电催化氧化活性和高稳定性,其催化电流明显高于 Pt/hCNC和 Pt/XC-72,电流衰减亦慢于 Pt/hCNC和 Pt/XC-72. hNCNC的分级微纳米结构有利于孔内传质和电子输运,从而提高反应速度. hNCNC的氮掺杂有利于 Pt在载体表面的分散,增强了载体-金属相互作用,提高了电化学活性面积和催化活性.为了进一步考察 hNCNC对 Pt的负载能力,本文还考察了高负载量 Pt/hNCNC的性能.在负载量高达60 wt%时, Pt/hNCNC中的 Pt颗粒仍无明显聚集,其甲醇氧化电流增加了30%,可以有效提高 DMFC的输出电流密度.
综上可见, hNCNC可以有效分散并稳定 Pt颗粒,从而提高电化学活性面积和甲醇电催化氧化活性,优于未掺杂的碳纳米笼和传统碳材料,展示了 hNCNC高分散 Pt颗粒用作 DMFC的高效阳极催化剂的重要前景,也表明 hNCNC有望成为应用广泛的新型载体.
关键词:
甲醇氧化
,
燃料电池
,
铂催化剂
,
分级结构氮掺杂碳纳米笼
,
高性能
杨立军
,
赵宇
,
陈盛
,
吴强
,
王喜章
,
胡征
催化学报
doi:10.1016/S1872-2067(12)60713-X
以替代铂为目标的高性能廉价氧还原电催化剂的研究为当今科学前沿.近年来人们发现,掺杂的碳基纳米结构具有催化活性高、稳定性好、资源丰富、抗CO和抗甲醇能力强等优点,是一种新型无金属氧还原电催化剂,具有替代铂基催化剂的潜力.本文结合作者课题组的最新研究成果,简要综述了碳基无金属氧还原电催化剂研究的主要进展,重点关注了富电子氮和缺电子硼单/共掺杂的碳纳米结构的氧还原催化性能及其与电子结构的关系,展望了碳基无金属氧还原催化剂的发展策略与前景.
关键词:
氧还原反应
,
无金属电催化剂
,
碳基纳米结构
,
掺杂
张维光
,
葛欣
,
孙磊
,
王喜章
,
沈俭一
催化学报
研究了活性炭负载的Fe催化剂在乙苯脱氢与逆水煤气变换偶合反应中的催化活性,考察了催化剂中的铁物相,添加Li, Na和K等碱金属以及CO2对催化活性的影响. 实验表明, Fe3O4可能是偶合反应的活性相. 在CO2气氛中,适当还原度的、经碱金属元素调变后的Fe/AC的催化活性较好,苯乙烯的选择性明显提高. 以NH3和CO2为探针分子,运用微分吸附量热技术表征了催化剂的表面酸碱性质. 结果表明,活性炭表面具有较多的弱酸位. 担载铁后,NH3的起始吸附热为96 kJ/mol, 吸附饱和覆盖度为112 μmol/g, 说明Fe/AC表面具有酸性; CO2的起始吸附热为72 kJ/mol, 吸附饱和覆盖度为7 μmol/g, 表明催化剂表面也有少量的碱位. 碱金属元素的加入减弱了Fe/AC催化剂表面上的酸强度,同时产生了一定量的碱性位,因而显著提高了苯乙烯的选择性. CO2的作用是及时除去脱氢反应产生的H2, 促进乙苯脱氢生成苯乙烯,并抑制乙苯的加氢裂解.
关键词:
铁/活性炭催化剂
,
乙苯
,
脱氢
,
逆水煤气变换
,
偶合反应
,
微分吸附量热