{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"系统分析了氧化物杂质对铁氧化物还原动力学的影响及其机理.发现:各种杂质影响的特点与杂质浓度、存在形态和/或加入方法,样品的初始化学组成和物理性状,还原剂的种类、反应温度、还原分数等多种因素有关.","authors":[{"authorName":"刘建华","id":"251a1532-f294-4c96-8dcd-eeea800e04eb","originalAuthorName":"刘建华"},{"authorName":"张家芸","id":"69a22598-6ab2-4149-b691-baee5e3105ae","originalAuthorName":"张家芸"},{"authorName":"周土平","id":"76b3809e-fe07-40a9-8717-3e6b0b7823a7","originalAuthorName":"周土平"}],"doi":"","fpage":"55","id":"b03aa552-ad14-4ee3-9169-cc57871c7dd7","issue":"4","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"cfae0eca-b771-4e23-a41c-c26b4f043591","keyword":"氧化物杂质","originalKeyword":"氧化物杂质"},{"id":"fce58f0a-4ae7-4520-b7d0-348d4c622269","keyword":"铁氧化物","originalKeyword":"铁氧化物"},{"id":"62b6e586-a8be-4c94-b698-145e3893fede","keyword":"还原动力学","originalKeyword":"还原动力学"}],"language":"zh","publisherId":"gtyjxb200004013","title":"氧化物杂质对铁氧化物还原动力学的影响","volume":"12","year":"2000"},{"abstractinfo":"研究了<1μm氧化铁粉在500℃、380℃、260℃、150℃温度下氢还原时,还原温度和氧化铁粉粒度对还原率、还原过程和还原产物相结构的影响.结果表明,500℃和380℃下还原速度较快,分别在15和23min后即能完成还原.在260℃和150℃下还原甚为缓慢;粉末粒度的细化在还原初期可明显提高还原速度,但随着还原反应的进行,在试验条件下粒度对反应的有利影响逐渐减缓;在温度<570℃的低温下氧化铁还原过程经由Fe2O3→Fe3O4→Fe两步进行,其整个反应速率受控于Fe3O4还原为Fe的反应过程,实验中并没有发现富氏体的存在.","authors":[{"authorName":"李运佩","id":"d1f0c3e9-0d6a-48ad-8b5b-485f29542fa1","originalAuthorName":"李运佩"},{"authorName":"王兴庆","id":"7e2529ae-482b-4a0c-b68e-dbf5ca98ff10","originalAuthorName":"王兴庆"},{"authorName":"戴瑞光","id":"c1e2d51b-1678-4b86-9953-7fd5dc56ff61","originalAuthorName":"戴瑞光"},{"authorName":"林峰","id":"8a3fcdab-8556-410c-8ae6-58fe52e69b9a","originalAuthorName":"林峰"}],"doi":"10.3969/j.issn.1001-7208.2008.05.010","fpage":"44","id":"10f31c89-7c30-4cbf-a9e1-d859f9487237","issue":"5","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"949f35d2-0d5b-464b-abf4-f451d89abff9","keyword":"微纳米氧化铁粉","originalKeyword":"微纳米氧化铁粉"},{"id":"d7375d9a-e2b4-4ced-825e-4468058400ed","keyword":"低温还原","originalKeyword":"低温还原"},{"id":"04af7d79-4cef-4122-991d-b4abea7b3e37","keyword":"还原动力学","originalKeyword":"还原动力学"},{"id":"48dd7a41-c6c7-46ac-9411-e5184a24a672","keyword":"还原机理","originalKeyword":"还原机理"}],"language":"zh","publisherId":"shjs200805010","title":"微纳米氧化铁粉低温还原动力学及机理的研究","volume":"30","year":"2008"},{"abstractinfo":"利用恒温还原和程序升温还原技术研究了水分压对铁基费托合成催化剂还原路径、还原机理和表观活化能的影响.程序升温还原结果表明,水分压对催化剂的还原路径没有明显的影响,催化剂均首先由α-Fe_2O_3还原为Fe_3O_4,然后超顺磁态Fe_3O_4先还原为FeO,再还原为α-Fe,而顺磁态Fe_3O_4则直接还原为α-Fe.恒温还原结果表明,催化剂在2.5%H_2O-97.5%H_2气氛中还原时,还原过程达到平衡时的还原程度随还原温度的升高而增加.利用Hancock-Sharp方法分析了恒温还原过程的动力学模型.结果表明,还原温度较低时,催化剂在2.5%H_2O-97.5%H_2气氛中还原时受内扩散模型控制;还原温度较高时则受晶相形成与生长模型控制.利用Kissinger方法计算了还原过程的活化能,发现随着水分压的增加,表观活化能呈增大的趋势.水分压对Fe_3O_4还原为α-Fe过程的影响大于其对α-Fe_2O_3还原为Fe_3O_4过程的影响.","authors":[{"authorName":"王洪","id":"6258960a-1455-4d64-9529-f34b805c3b6f","originalAuthorName":"王洪"},{"authorName":"杨勇","id":"9010c444-2a28-4316-9500-573d78c6007c","originalAuthorName":"杨勇"},{"authorName":"吴宝山","id":"9f1817b4-c25e-4979-acec-3169eeac34e1","originalAuthorName":"吴宝山"},{"authorName":"许健","id":"0980eb12-55db-4833-acda-ce6404047e91","originalAuthorName":"许健"},{"authorName":"王虎林","id":"27a1582d-7d9f-4935-a4ff-65521887594c","originalAuthorName":"王虎林"},{"authorName":"青明","id":"740a7851-bd3d-4804-abcc-b2ca795638a9","originalAuthorName":"青明"},{"authorName":"相宏伟","id":"3bdc7d45-65ae-4ce7-83f4-ae7cccdfd8da","originalAuthorName":"相宏伟"},{"authorName":"李永旺","id":"ef0e1bcd-c280-4320-a442-349046129ad1","originalAuthorName":"李永旺"}],"doi":"10.3724/SP.J.1088.2010.90820","fpage":"205","id":"65814704-0901-4f47-bf97-94b1c95acb95","issue":"2","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"ff15f115-98c2-4236-8f19-bc99c81e5ea1","keyword":"水分压","originalKeyword":"水分压"},{"id":"009c051b-49a0-4aea-ae02-7f706110d00c","keyword":"费托合成","originalKeyword":"费托合成"},{"id":"ef8d47fc-daf6-42f4-89cf-d895d89a1e68","keyword":"铁基催化剂","originalKeyword":"铁基催化剂"},{"id":"8b0e751f-889a-491f-b898-bbdc98e842c9","keyword":"还原动力学","originalKeyword":"还原动力学"},{"id":"9cb66383-2a65-4f86-9b3f-262b4faa5687","keyword":"表观活化能","originalKeyword":"表观活化能"}],"language":"zh","publisherId":"cuihuaxb201002013","title":"水分压对铁基费托合成催化剂还原动力学的影响","volume":"31","year":"2010"},{"abstractinfo":"采用沉淀法和喷雾干燥技术制备了一个典型的费托合成铁基催化剂(100Fe/3K/6SiO_2,质量比)所得样品在不同温度下焙烧5 h.分别利用N_2吸附和穆斯保尔谱表征了催化剂的织构和物相性质,同时利用热重分析仪记录了催化剂在H2气氛中的还原过程,并利用气固反应模型对还原曲线进行了动力学模拟.结果表明,300~600℃焙烧后催化剂的还原过程可用相同的模型拟合,其中由α-Fe_2O_3还原为Fe_3O_4的过程可用一维晶相形成与生长模型或三维相界面反应模型描述,Fe_3O_4还原为α-Fe的过程受二维晶相形成与生长模型控制.而对于700℃焙烧后的催化剂,其还原过程可能受晶相形成与生长模型和收缩核模型共同影响.随着焙烧温度的提高,催化剂的还原能力减弱,还原过程活化能升高.这可能是由于焙烧温度的提高导致晶粒尺寸增大和晶格缺陷减少所致.","authors":[{"authorName":"王洪","id":"3a0e9205-5ac7-4c46-a267-a6e3cf32dac6","originalAuthorName":"王洪"},{"authorName":"杨勇","id":"c06a8712-5365-47d2-ac8c-22ab9a9b4063","originalAuthorName":"杨勇"},{"authorName":"吴宝山","id":"7f8f6f26-7d06-454d-887c-3087772a3d9d","originalAuthorName":"吴宝山"},{"authorName":"许健","id":"c59914e8-195c-4889-b612-35c8a9d2822e","originalAuthorName":"许健"},{"authorName":"王虎林","id":"8bba1ba5-d18f-4b22-818c-09cd0f4ac457","originalAuthorName":"王虎林"},{"authorName":"定明月","id":"ffbfd5d7-66ca-4fbf-873e-0cf388703318","originalAuthorName":"定明月"},{"authorName":"相宏伟","id":"6a8d9af7-02f9-4101-a7b9-9879fa03e3ae","originalAuthorName":"相宏伟"},{"authorName":"李永旺","id":"276214fc-7cc2-407f-9395-faa4959aaa25","originalAuthorName":"李永旺"}],"doi":"","fpage":"1101","id":"38b48f56-e08e-4ea6-a0a2-ddfb01d7e02b","issue":"11","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"61c8abb5-c730-4c8b-b287-42ef8ba0e4d1","keyword":"费托合成","originalKeyword":"费托合成"},{"id":"57d1b266-47c6-4da4-9a17-b27766e09c1c","keyword":"铁基催化剂","originalKeyword":"铁基催化剂"},{"id":"f79b8e62-33b2-44cd-956a-ee1c905ce87f","keyword":"焙烧温度","originalKeyword":"焙烧温度"},{"id":"bb7521b0-e33d-4665-b1c0-3ef024c5fc85","keyword":"还原动力学","originalKeyword":"还原动力学"},{"id":"eaf66726-1cab-447d-912e-a4b2f29e1fee","keyword":"表观活化能","originalKeyword":"表观活化能"}],"language":"zh","publisherId":"cuihuaxb200911006","title":"焙烧温度对费托合成铁基催化剂还原动力学的影响","volume":"30","year":"2009"},{"abstractinfo":"采用热失重法在900~1 100℃的范围和CO的体积分数为100%的气氛条件下,对武钢球团矿进行恒温还原实验,通过阿伦尼乌斯(Arrhenius)图和未反应核模型公式分别计算了还原反应的表观活化能和反应速率常数、扩散系数,并判断反应速度的限制性环节,使用场发射扫描电子显微镜(FESEM)和能谱分析(EDS)观察了球团矿在还原过程不同阶段的微观形貌和铁的氧化物的形式,分析了球团矿的反应机理.结果表明:在球团矿还原反应前期至中后期的大部分时间内,反应的限制性环节为界面化学反应,而后期限制性环节改变为固相扩散;球团矿还原是按照铁的氧化物从高级到低级的顺序进行的,采用未反应核模型进行动力学分析是正确的.","authors":[{"authorName":"李鹏","id":"6aa00377-036f-49ff-b0f0-62003be67d9b","originalAuthorName":"李鹏"},{"authorName":"毕学工","id":"f38db8a9-192d-401d-a82a-5171dc2965e4","originalAuthorName":"毕学工"},{"authorName":"张慧轩","id":"ba9a4941-3e53-4732-8de1-87c02228643e","originalAuthorName":"张慧轩"},{"authorName":"周进东","id":"3576f448-71e3-4843-9d42-1b75257b21ad","originalAuthorName":"周进东"}],"doi":"10.13228/j.boyuan.issn1001-0963.20140273","fpage":"8","id":"054d6192-e3b3-4378-89e6-63df6d2ee743","issue":"11","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"d9c58fed-90d4-4b80-8463-9d997c2bf4ca","keyword":"球团矿","originalKeyword":"球团矿"},{"id":"848603e4-5a59-4f54-8964-d48de0d66ce9","keyword":"还原动力学","originalKeyword":"还原动力学"},{"id":"283a4ed1-fa81-440c-a354-409517a1d5f4","keyword":"阿伦尼乌斯图","originalKeyword":"阿伦尼乌斯图"},{"id":"9ed953a4-651e-47ae-89ca-e378ddb81ef0","keyword":"未反应核模型","originalKeyword":"未反应核模型"}],"language":"zh","publisherId":"gtyjxb201511002","title":"武钢球团矿还原反应动力学","volume":"27","year":"2015"},{"abstractinfo":"通过热重分析实验、XRD和金相分析等实验手段,对铁矿石球团在600~1 000℃ 温度范围内的H2还原过程进行了探讨,并采用未反应核模型对铁矿石球团的H2还原动力学进行分析.结果表明:H2还原铁矿石球团的过程具有明显的阶段性特征,还原速率整体上随着温度的升高而增大,然而在700 ~900℃温度范围内出现了还原速率的迟滞现象.在本实验条件下,整个还原过程的速率由外扩散、内扩散和化学反应混合控制,反应的表观活化能为39.49 kJ/mol.","authors":[{"authorName":"方展","id":"dd3fc49e-a81c-4217-aa7e-d11e3039410a","originalAuthorName":"方展"},{"authorName":"鲁雄刚","id":"685b8d6c-d0f2-477b-8977-1e1765354a7e","originalAuthorName":"鲁雄刚"},{"authorName":"耿淑华","id":"f9f378c9-1e34-42d1-abc8-1ae9a3239a6d","originalAuthorName":"耿淑华"}],"doi":"","fpage":"31","id":"149d95eb-5e02-4fd8-b317-1717c1e7b31c","issue":"6","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"fa359eb8-5d37-427d-8a6d-67cb8934e207","keyword":"铁矿石球团","originalKeyword":"铁矿石球团"},{"id":"22d18808-bbea-4cfd-a5b8-8e2a788fcd5c","keyword":"H2","originalKeyword":"H2"},{"id":"502af0d7-b150-4bd9-a11b-bc554758e196","keyword":"还原动力学","originalKeyword":"还原动力学"},{"id":"b9211696-6783-4241-8104-18e6e4325a13","keyword":"物相转变规律","originalKeyword":"物相转变规律"},{"id":"6d82f22f-f782-461b-adb2-3e5abe094d9a","keyword":"迟滞现象","originalKeyword":"迟滞现象"}],"language":"zh","publisherId":"shjs201206007","title":"H2还原铁矿石球团的动力学研究","volume":"34","year":"2012"},{"abstractinfo":"用热重分析法研究了低温下不同粒度氧化铁的氢还原动力学,得出在同一温度下,铁矿粉粒度从107.5μm降到2.μm后,由于粉体的表面积大幅度增加,提高了粉气接触面积,从而使得化学反应的速度提高了8倍左右,还原反应的表观活化能从78.3 kJ/mol降低到36.9 kJ/mol;当反应速度相同时,粒度6.5μm的粉体的反应温度比107.5μm的降低了 80℃左右.同时,通过理论推导和实验结果表明,当反应扩散层厚度相同时,铁矿粉粒度越小,反应扩散层厚度越薄,其还原率越高.","authors":[{"authorName":"庞建明","id":"a4b2ad14-f7c1-4cb5-86cf-c1c39734bc7e","originalAuthorName":"庞建明"},{"authorName":"郭培民","id":"7591d5c2-4f70-454b-8ee7-bb9726739f32","originalAuthorName":"郭培民"},{"authorName":"赵沛","id":"b258c7a3-fdc3-48fa-bb1d-a47d6f4c6265","originalAuthorName":"赵沛"},{"authorName":"曹朝真","id":"4e5380aa-a640-43d9-aa5a-69c7d32ee208","originalAuthorName":"曹朝真"},{"authorName":"张殿伟","id":"cb778a9e-661d-4ecb-9822-f7b5fe295546","originalAuthorName":"张殿伟"}],"doi":"","fpage":"7","id":"9cc8e4d8-de75-47d2-b903-74fd55e4064b","issue":"7","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"1075e6e8-287c-4a14-8ac8-9985da960180","keyword":"低温","originalKeyword":"低温"},{"id":"51566ae2-e84a-491d-81cf-2399ab9fdc9a","keyword":"氧化铁","originalKeyword":"氧化铁"},{"id":"30c1c5e8-87d3-45ad-ae57-860122c96f90","keyword":"还原动力学","originalKeyword":"还原动力学"},{"id":"8790d72f-e09a-491b-9dff-0b087d39b716","keyword":"热重分析","originalKeyword":"热重分析"}],"language":"zh","publisherId":"gt200807002","title":"低温下氢气还原氧化铁的动力学研究","volume":"43","year":"2008"},{"abstractinfo":"应用等温和非等温热重分析法研究了Co3O4的氢还原过程动力学,得出两种条件下过程均分为Co3O4还原为CoO和CoO还原为Co两个步骤,二步骤均为界面化学反应控速.在523-603 K等温及503-589 K非等温条件下,Co3O4还原为CoO步骤的表观活化能均为133 kJ/mol;523-603 K等温还原CoO为Co步骤的表观活化能为87.5 kJ/mol.","authors":[{"authorName":"刘建华","id":"3f75ef59-0b1a-495b-ba92-d4d778258da6","originalAuthorName":"刘建华"},{"authorName":"张家芸","id":"582379dd-d773-464d-af53-e12cd48cc168","originalAuthorName":"张家芸"},{"authorName":"周土平","id":"9a8ac8d7-8572-4111-85b1-842d4106cc44","originalAuthorName":"周土平"},{"authorName":"魏寿昆","id":"20b407f6-b95d-48f4-be4f-6013675f507c","originalAuthorName":"魏寿昆"}],"doi":"10.3321/j.issn:0412-1961.2000.08.013","fpage":"837","id":"dd658a1c-edbb-4b05-a439-92f546d0f44b","issue":"8","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"2ce8f914-9306-4360-9c8e-b7bd2df13b6a","keyword":"氢","originalKeyword":"氢"},{"id":"2bf0bfcd-a84e-4e58-ad21-ea7cf2f4650f","keyword":"Co3O4","originalKeyword":"Co3O4"},{"id":"dd947ae2-71ea-4064-b5b2-32a9bf5c7def","keyword":"还原动力学","originalKeyword":"还原动力学"},{"id":"d543980b-207c-4e75-903f-b03ad0c99b9a","keyword":"热重分析","originalKeyword":"热重分析"}],"language":"zh","publisherId":"jsxb200008013","title":"Co3O4的氢还原过程动力学研究","volume":"36","year":"2000"},{"abstractinfo":"在自制的kg级高温流化床中研究了氢气还原1~3mm矿粉的动力学试验.随着时间的增加,气体利用率下降,表明还原前期反应速度快,后期反应慢;温度越高,气体利用率越高,但随着还原时间的增加,差距在逐步缩小;对于750℃,前20min的气体利用率为9%,金属化率达到84%,说明氢气还原矿粉反应是非常迅速的.随着气速的增加,金属化率在增加,并且几乎成线性关系,因此使用氢气作为还原剂,可以允许更高的气速,从而提高设备的生产效率.随着料高的增加,金属化率不断下降,然而气体利用率却在不断升高.使用氢气作为还原剂,可以将还原温度降低到700~750℃,避免流化床过程中的粘结难题;试验中氢气还原1~3mm铁矿粉时的表观活化能为58.4 kJ/mol.","authors":[{"authorName":"郭培民","id":"7cf93d70-0a22-4cf1-9325-d072265cfdc0","originalAuthorName":"郭培民"},{"authorName":"庞建明","id":"379e34db-41cc-441f-b4f6-90429a0d3fe4","originalAuthorName":"庞建明"},{"authorName":"赵沛","id":"1baa4c1e-02b1-4552-b3e3-9a08392e0df9","originalAuthorName":"赵沛"},{"authorName":"曹朝真","id":"0750a81f-12e0-4b7c-9dac-f11b328ce797","originalAuthorName":"曹朝真"},{"authorName":"赵定国","id":"e4bfe8fc-4333-4858-b538-48dbe92da1e7","originalAuthorName":"赵定国"},{"authorName":"王多刚","id":"a64b5059-2af4-4409-a4bb-59512170fa9f","originalAuthorName":"王多刚"}],"doi":"","fpage":"19","id":"b9c51884-d17f-4b7c-8cc7-3d64f3a39c9c","issue":"1","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"8648d8b2-1333-47f9-986e-967a78d70e7f","keyword":"氢气","originalKeyword":"氢气"},{"id":"2e13cc70-696b-4829-a02f-a5afa5c4c6dc","keyword":"流化床","originalKeyword":"流化床"},{"id":"bba08418-0272-4409-9da1-7635f5c54c32","keyword":"矿粉","originalKeyword":"矿粉"},{"id":"62e68bf8-9f6f-4e9c-8418-e2dbab7eb6f4","keyword":"还原动力学","originalKeyword":"还原动力学"}],"language":"zh","publisherId":"gt201001004","title":"氢气还原1~3 mm铁矿粉的动力学研究","volume":"45","year":"2010"},{"abstractinfo":"通过热重实验获得了873、973和1173 K三个温度条件下不同组成的H2-CO混合气体还原氧化亚铁的动力学曲线,发现在873和973 K时由于析碳反应的发生,动力学曲线较为混乱,没有规律,而在1 173 K时,还原曲线则随还原气体中H2含量(体积分数)的增加表现出明显的规律性.通过H2-CO与H2-Ar气体还原氧化亚铁动力学的比较,混合气体中CO参与反应的速率与其含量(体积分数)基本符合线性关系.还原产物形貌观察的结果表明,随着反应温度的升高,还原产物孔隙增大,铁相充分发育长大并逐渐有明显的烧结现象.","authors":[{"authorName":"杨晓波","id":"bb9fa04d-3a0d-48f6-b32f-f4073f284483","originalAuthorName":"杨晓波"},{"authorName":"胡晓军","id":"dbb124ca-cda2-4030-844e-a95058e7f2d8","originalAuthorName":"胡晓军"},{"authorName":"郑建超","id":"81f77ac7-9443-42ef-ae47-1241d87f8c5a","originalAuthorName":"郑建超"},{"authorName":"张建涛","id":"a09935db-1058-4f21-a1b3-d50acd0db66c","originalAuthorName":"张建涛"},{"authorName":"周国治","id":"753dcc06-cc73-4fe9-b399-79b8287e0d6a","originalAuthorName":"周国治"}],"doi":"10.14186/j.cnki.1671-6620.2016.04.002","fpage":"242","id":"eae751e9-8d7d-4bf8-99b7-0fbe8fe61cf0","issue":"4","journal":{"abbrevTitle":"CLYYJXB","coverImgSrc":"journal/img/cover/CLYYJXB.jpg","id":"17","issnPpub":"1671-6620","publisherId":"CLYYJXB","title":"材料与冶金学报"},"keywords":[{"id":"77118d0c-287c-459f-b579-6a216339380c","keyword":"H2-CO混合气体","originalKeyword":"H2-CO混合气体"},{"id":"10f66edb-35cf-4849-a4a1-3a2b42ce30d2","keyword":"还原动力学","originalKeyword":"还原动力学"},{"id":"114a9e8d-9bd9-47ba-b6df-bb7124cf47e3","keyword":"氧化亚铁粉体","originalKeyword":"氧化亚铁粉体"},{"id":"9c4d14a7-d8b5-4ea3-bf1e-56408734784e","keyword":"析碳","originalKeyword":"析碳"}],"language":"zh","publisherId":"clyyjxb201604002","title":"H2-CO混合气体还原氧化亚铁粉体的动力学","volume":"15","year":"2016"}],"totalpage":3672,"totalrecord":36713}