{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"用自制的超声试验装置采用不同的分散方法(搅拌分散,搅拌、表面活性剂分散,强超声、搅拌、表面活性剂分散)将纳米WS2颗粒分散于PAO6基础润滑油中,研究了纳米WS2颗粒在基础油中的分散稳定性以及表面活性剂对纳米WS2颗粒分散稳定性的影响,并对其分散机理进行了分析.结果表明:强超声、搅拌、表面活性剂分散的复合处理对提高纳米WS2颗粒在基础油中分散稳定性的效果最好,其机理是将基础油中的纳米WS2团聚体解聚,并使解聚后的纳米WS2颗粒表面活性增强,表面特性由亲水疏油转变为亲油疏水,经表面修饰后的纳米WS2颗粒被长碳链极性分子和润滑油分子所包围,形成空间位阻层和溶剂化层共同作用防止纳米颗粒的碰撞团聚,使得解聚后的纳米WS2颗粒长期稳定地分散在基础油中.","authors":[{"authorName":"毛大恒","id":"61098522-957f-45df-9aba-b4605b08183e","originalAuthorName":"毛大恒"},{"authorName":"刘阳","id":"2da3f97e-3702-4c02-8685-52a226ddb92a","originalAuthorName":"刘阳"},{"authorName":"石琛","id":"ace1274e-74b7-41fe-aa27-1b834e5bc1e9","originalAuthorName":"石琛"}],"doi":"","fpage":"53","id":"dddc4a30-e8d6-4cf0-9c9f-300cd501e760","issue":"7","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"744fa5a2-50a7-4e43-9898-aeb1a52cc193","keyword":"强超声","originalKeyword":"强超声"},{"id":"221ec9ec-3540-4556-852c-4f8c83f2598e","keyword":"搅拌","originalKeyword":"球磨搅拌"},{"id":"de1e71ee-6464-4dda-805a-33e9cc79291d","keyword":"纳米WS2颗粒","originalKeyword":"纳米WS2颗粒"},{"id":"71c0416e-ee81-493f-820b-63a9a2677d68","keyword":"表面活化","originalKeyword":"表面活化"},{"id":"7e079ae7-254e-4522-88cc-1b6746839d24","keyword":"分散稳定性","originalKeyword":"分散稳定性"}],"language":"zh","publisherId":"jxgccl201307013","title":"超声活化处理后纳米WS2颗粒在基础润滑油中的分散稳定性及机理","volume":"37","year":"2013"},{"abstractinfo":"用高能法制备出SiC-Al复合粉体,再把复合粉体搅拌弥散到Al熔液中,浇铸制得0.5%、1.0%、1.5%质量分数,下同)SiCp/Al复合材料.制备出的复合材料与未经增强的铝材相比,其抗拉强度分别提高:46.8%、63.8%、34.0%,硬度分别提高:99.1%、116.1%、67.9%.在SiC添加质量分数相同的情况下,添加复合粉的浇铸体与直接添加SiC粉体的浇铸体相比,前者的抗拉强度和硬度高于后者,说明SiC粉和Al粉复合后更容易弥散到Al熔液中.","authors":[{"authorName":"金兰","id":"3bcba5b4-e410-4471-9ef9-def75629138a","originalAuthorName":"金兰"},{"authorName":"盖国胜","id":"0edaf544-96e1-4525-9cde-3f983cff6b4c","originalAuthorName":"盖国胜"},{"authorName":"李建国","id":"81a91a36-37e1-4a2b-8914-206c68ccdd97","originalAuthorName":"李建国"},{"authorName":"杨玉芬","id":"fc461875-01f0-413f-91b2-9e3061d055a0","originalAuthorName":"杨玉芬"},{"authorName":"何迁","id":"d8012564-ec66-42f6-95f8-531a5cc4bb56","originalAuthorName":"何迁"},{"authorName":"刘向兵","id":"91510332-cf16-427e-b2ef-942ed7ab470a","originalAuthorName":"刘向兵"}],"doi":"","fpage":"557","id":"b3ff8f79-84a9-4a83-b996-7f5654943eb3","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"218147bd-43a3-4e0f-b289-cfaf3e11fce4","keyword":"铝基复合材料","originalKeyword":"铝基复合材料"},{"id":"1d827416-f58e-44cf-ad24-5d03217cad9b","keyword":"机械分散","originalKeyword":"机械分散"},{"id":"dc21ce43-da06-44d5-bebe-53e9fc10cf2c","keyword":"高能","originalKeyword":"高能球磨"},{"id":"0cb2c847-9625-4dc9-9a4f-62c8d6bbc750","keyword":"搅拌铸造","originalKeyword":"搅拌铸造"}],"language":"zh","publisherId":"xyjsclygc2009z1126","title":"法和搅拌铸造法制备SiCp/Al复合材料","volume":"38","year":"2009"},{"abstractinfo":"为了研究具有自主知识产权的大型立式螺旋搅拌机结构强度与动力匹配,在立式螺旋搅拌机试验台进行了试验研究,建立立式搅拌试验机的离散元(DEM)-计算流体动力学(CFD)多学科耦合模型,进行搅拌器动态分析,搅拌器阻力矩仿真与试验吻合,搅拌DEM-CFD多学科耦合建模及仿真方法,对搅拌动力学分析是有效的.为评价320 t立式螺旋搅拌机的结构强度与动力性能,建立了320 t级立式螺旋搅拌机离散元模型和有限元模型,分析了搅拌器启动和运行的阻力矩,分析了启动速度和钢尺寸对搅拌器阻力矩的影响,可为搅拌动力匹配提供设计依据,分析了搅拌器启动与运行过程中的结构强度,结果表明搅拌器结构强度可靠,现场测试结果验证了数值模拟结果.","authors":[{"authorName":"宁晓斌","id":"f5a6db75-3d64-4a5a-951b-b1d5117db084","originalAuthorName":"宁晓斌"},{"authorName":"孙新明","id":"f1ae73f1-74a3-4dd8-bd32-c7440fe95361","originalAuthorName":"孙新明"},{"authorName":"佘翊妮","id":"7c1c7fae-1a97-4fb3-b00a-3d410833c30f","originalAuthorName":"佘翊妮"},{"authorName":"姬建刚","id":"345e1a52-2991-416e-ad94-286c52cf60d7","originalAuthorName":"姬建刚"},{"authorName":"刘洋","id":"511c0fde-9f06-4779-849b-e0354ea23b01","originalAuthorName":"刘洋"}],"doi":"10.3969/j.issn.2095-1744.2016.04.016","fpage":"63","id":"5baffbe7-0e36-46a6-89d7-266a10844621","issue":"4","journal":{"abbrevTitle":"YSJSGC","coverImgSrc":"journal/img/cover/YSJSGC.jpg","id":"76","issnPpub":"2095-1744","publisherId":"YSJSGC","title":"有色金属工程"},"keywords":[{"id":"ed76c93b-ecb6-41ab-bc39-1e8a53d9a959","keyword":"搅拌","originalKeyword":"搅拌磨"},{"id":"039c113c-ecc8-400f-a28b-9c6faa3be90b","keyword":"搅拌器","originalKeyword":"搅拌器"},{"id":"2c7dcd4b-f542-40b4-9e1f-c5ffbc792ccb","keyword":"离散元","originalKeyword":"离散元"},{"id":"78517093-99cc-468f-be53-f8da4cffb689","keyword":"阻力矩","originalKeyword":"阻力矩"},{"id":"97695d7b-792a-4640-923d-6f6a6116f3e0","keyword":"强度","originalKeyword":"强度"}],"language":"zh","publisherId":"ysjs201604016","title":"搅拌DEM-CFD耦合仿真研究及搅拌器强度分析","volume":"6","year":"2016"},{"abstractinfo":"在工业矿酸比条件下,研究攀枝花钛铁矿热酸磨快速浸出的可行性,着重考察了搅拌的转速、料比、硫酸浓度以及反应温度等因素对酸解的影响.结果表明,与未实施的浸出相比(其它试验条件相同、浸60 min),钛的浸出率可提高64%,这是由于搅拌导致钛铁矿晶格畸变以及颗粒显著细化所致.获得了浸的优化工艺条件为:搅拌的转速700 r/min,料比5:1,矿酸比1:1.6,硫酸浓度70%以及温度120℃.在此条件下浸60 min钛的酸解率达到81%,所得钛液稳定性≥550 mL,表明70%硫酸可直接液相酸解钛铁矿,为实现水解废酸循环利用提供了一条可行途径.","authors":[{"authorName":"李高兰","id":"f3b72210-c793-4d89-b76a-5019876e7ada","originalAuthorName":"李高兰"},{"authorName":"杜长山","id":"3dd6e81d-6de7-4f5e-9e4a-a594f4305f5a","originalAuthorName":"杜长山"},{"authorName":"吕莉","id":"be2334ce-cff8-4428-b40e-963b9951ff80","originalAuthorName":"吕莉"},{"authorName":"吴桂兰","id":"8da1b2e3-703a-45c4-b0c8-db98d35b039a","originalAuthorName":"吴桂兰"},{"authorName":"梁斌","id":"e7539b5e-b36b-49ec-8d88-79d73d09f7a5","originalAuthorName":"梁斌"},{"authorName":"吴潘","id":"1c05a477-9f61-47bd-8bb6-5de9271648d7","originalAuthorName":"吴潘"},{"authorName":"李春","id":"346b46cc-6aee-4848-8134-03de4cbc0bc7","originalAuthorName":"李春"},{"authorName":"郑琪","id":"79eb5c48-896a-4495-98eb-35a277a2d7f2","originalAuthorName":"郑琪"}],"doi":"","fpage":"1","id":"2aba0160-3099-4123-8f50-aac0629b21c5","issue":"4","journal":{"abbrevTitle":"GTFT","coverImgSrc":"journal/img/cover/gtft1.jpg","id":"28","issnPpub":"1004-7638","publisherId":"GTFT","title":"钢铁钒钛"},"keywords":[{"id":"f23df8fc-1d4f-4548-a7e3-a83a41d70d1e","keyword":"钛铁矿","originalKeyword":"钛铁矿"},{"id":"f10cdb3d-41d9-46e2-83a3-94b67ebf3e8f","keyword":"酸解","originalKeyword":"酸解"},{"id":"8d629b90-5c8e-4e15-89e4-4ed6e9ceeefc","keyword":"","originalKeyword":"球磨"},{"id":"0fca9b46-3b43-4ac5-a150-7a5dbc48e79a","keyword":"液相","originalKeyword":"液相"},{"id":"502a196b-2ac2-4b17-ad6e-2f62ba5005ea","keyword":"TiO2","originalKeyword":"TiO2"}],"language":"zh","publisherId":"gtft201204001","title":"热酸浸出攀枝花钛铁矿","volume":"33","year":"2012"},{"abstractinfo":"本文综述了反应技术制备纳米材料的研究及应用,重点对反应反应机理作了探讨.研究表明磨过程中引入的高密度缺陷和纳米界面大大促进了自蔓延高温合成(SHS)反应的进行,且反应在纳米态下进行.","authors":[{"authorName":"张修庆","id":"3222eab3-062e-4f10-8bb1-93d6201a5fab","originalAuthorName":"张修庆"},{"authorName":"朱心昆","id":"ca3a62cd-c453-480b-9110-de66ea4b6b6b","originalAuthorName":"朱心昆"},{"authorName":"颜丙勇","id":"41e65626-b0b0-4a75-84ed-5ed70ea8882f","originalAuthorName":"颜丙勇"},{"authorName":"程抱昌","id":"27ec1491-92ff-4f58-b7e0-1a85d86041ec","originalAuthorName":"程抱昌"}],"doi":"10.3969/j.issn.1673-2812.2001.02.024","fpage":"95","id":"7e3226a1-c1f7-452e-856a-8d2ea8696076","issue":"2","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"e11d2275-dc36-42a3-b6a7-a45643002853","keyword":"纳米材料","originalKeyword":"纳米材料"},{"id":"8361e32e-e490-416b-a38a-8e74492ab426","keyword":"制备","originalKeyword":"制备"},{"id":"7bba0b29-21df-4b49-8813-16dbcaa23194","keyword":"反应","originalKeyword":"反应球磨"},{"id":"06a70b6d-e50c-4b9d-aa76-7f532f4373cc","keyword":"反应机理","originalKeyword":"反应机理"}],"language":"zh","publisherId":"clkxygc200102024","title":"反应技术制备纳米材料","volume":"19","year":"2001"},{"abstractinfo":":利用高能机械法在GCr15钢表面获得了铝涂层。探讨了该涂层的组织与相结构,并且分析了其退火后的变化。","authors":[{"authorName":"齐宝森","id":"0b874b74-c3ce-40d6-bfaa-a5e5cd0083f9","originalAuthorName":"齐宝森"},{"authorName":"姚新","id":"5ff61e25-1047-4a9f-b366-93566c4c5c5a","originalAuthorName":"姚新"},{"authorName":"王成国","id":"1039e08c-22fb-4ead-9ad7-d7c05a8d67c1","originalAuthorName":"王成国"},{"authorName":"徐英","id":"00bf798d-3f28-4189-b40e-cdf1457a3157","originalAuthorName":"徐英"}],"doi":"10.3969/j.issn.1001-4381.2001.03.013","fpage":"39","id":"bf2dfa2b-ff2c-4f59-b673-5ed919d9e4fc","issue":"3","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"41ccfad8-b558-47a2-9ffd-d2d59294fe58","keyword":"高能","originalKeyword":"高能球磨"},{"id":"155a4814-b012-42e2-a7b8-fe5f66b0939d","keyword":"表面涂层","originalKeyword":"表面涂层"},{"id":"a7a9e15d-8c28-4c5e-ab69-c20c2077aeff","keyword":"轴承钢","originalKeyword":"轴承钢磨球"}],"language":"zh","publisherId":"clgc200103013","title":"高能法制备表面铝涂层的研究","volume":"1","year":"2001"},{"abstractinfo":"用法制备出钛纳米晶粉末.结果表明,经过24h后,晶粒平均尺寸达到12—13nm粉末的氧、氮含量极低、粉末的硬度与晶粒尺寸的关系为正常的Hall-Petch关系。","authors":[{"authorName":"王开阳","id":"71a961e8-e267-436c-bd33-1e7bb4261232","originalAuthorName":"王开阳"},{"authorName":"沈同德","id":"6abe9c7e-7dc8-45d5-a9ee-9cc255701ec9","originalAuthorName":"沈同德"},{"authorName":"王景唐","id":"e43bb6e2-c77d-467e-b000-b8442845b50d","originalAuthorName":"王景唐"},{"authorName":"全明秀","id":"ae3a98a0-1e03-4f1b-8216-136c639140c7","originalAuthorName":"全明秀"}],"categoryName":"|","doi":"","fpage":"89","id":"e386c2f3-ced0-4844-bcdb-0a8156d76778","issue":"7","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"553c0ded-1097-4c43-9f2b-ebe5025202b2","keyword":"","originalKeyword":"球磨"},{"id":"192f38a5-b809-40a4-bfd0-d27338ef6907","keyword":"nanocrystalline Ti","originalKeyword":"nanocrystalline Ti"},{"id":"efa21bc4-586a-4c92-8e69-83faa43b0122","keyword":"hardness","originalKeyword":"hardness"}],"language":"zh","publisherId":"0412-1961_1993_7_7","title":"法制备钛纳米晶","volume":"29","year":"1993"},{"abstractinfo":"为探讨不同的介质对法制备纳米锑粉的影响,以250μm大小的锑粉为原料,采用干法机械以及添加不同的介质进行湿法机械的方式制备出不同类型的锑基粉末.应用XRD、TEM及FT-IR对制备的锑基粉末的结构、形貌及粒径大小进行了表征分析.研究结果表明:不同的介质对机械法制备纳米锑粉的作用是不同的.采用于法机械磨制备出的锑粉会产生氧化现象,采用湿法可制备出纳米锑粉.当介质为蒸馏水时,可有效防止纳米锑粉的氧化,但锑粉的分散性不佳;当介质为蒸馏水和十二烷基硫酸钠时,可制备出分散均匀、粒径分布不均匀的纳米锑粉;当介质为蒸馏水和OP-10时,可制备出分散均匀、粒径分布均匀纳米锑粉,锑粉的平均粒径约为20nm.","authors":[{"authorName":"徐建林","id":"c98eb2aa-1d2e-43e4-8676-b985a57f1585","originalAuthorName":"徐建林"},{"authorName":"郭强","id":"674c64ea-6ef5-4ec0-94b9-2b76dc109e31","originalAuthorName":"郭强"},{"authorName":"高威","id":"3f675278-cbb1-4e45-bd52-f36dcf3fc477","originalAuthorName":"高威"},{"authorName":"康昭","id":"9915f98d-3ced-49fc-8ab3-d37ee34f1ed3","originalAuthorName":"康昭"},{"authorName":"席国强","id":"73130499-663d-49ed-af1f-9e82d611b55b","originalAuthorName":"席国强"},{"authorName":"张亮","id":"222a244d-cf4b-491d-84a0-03d2920d5ab3","originalAuthorName":"张亮"}],"doi":"10.3969/j.issn.1005-5053.2013.1.009","fpage":"50","id":"b56c89e9-270d-4b61-98c4-8b35a07a025b","issue":"1","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"2caacef4-351e-47d8-a0ba-40bbec72207b","keyword":"锑","originalKeyword":"锑"},{"id":"04a55789-ca4e-498f-a601-fcd3cf6c46d1","keyword":"","originalKeyword":"球磨"},{"id":"4e77b339-78ae-4081-a9c0-d545b80cff2f","keyword":"纳米粉末","originalKeyword":"纳米粉末"}],"language":"zh","publisherId":"hkclxb201301009","title":"介质对机械法制备纳米锑粉影响的研究","volume":"33","year":"2013"},{"abstractinfo":"从扩散理论出发,结合Al-Cu合金高能实验结果,分析了高能磨过程中的扩散特点,提出了固态合成反应模型并进行了分析计算. 结果表明,高能磨过程中固态反应能否发生取决于体系在磨过程中能量升高程度,而反应完成与否则受体系中的扩散过程控制,即受制于晶粒细化程度和粉末碰撞温度.","authors":[{"authorName":"席生岐","id":"2b58cbe8-8eec-4a70-be8f-22163e89d94f","originalAuthorName":"席生岐"},{"authorName":"屈晓燕","id":"cd54f056-15e0-49c3-93e0-8561f827cd85","originalAuthorName":"屈晓燕"},{"authorName":"刘心宽","id":"f06ead33-bbf1-4220-91c7-68a1f43b8641","originalAuthorName":"刘心宽"},{"authorName":"马明亮","id":"2d4b8237-78bc-4927-a737-6f86d991d97a","originalAuthorName":"马明亮"},{"authorName":"周敬恩","id":"45c17486-9c30-404f-83a2-92c372a553e1","originalAuthorName":"周敬恩"},{"authorName":"王笑天","id":"0ce9820a-7748-436f-93e0-b71c290c0357","originalAuthorName":"王笑天"}],"doi":"10.3969/j.issn.1005-0299.2000.03.021","fpage":"88","id":"7f32dc74-dce3-4608-8ad9-7d52b902cc47","issue":"3","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"24b72daf-6a35-465c-abd7-eff0a347c276","keyword":"高能","originalKeyword":"高能球磨"},{"id":"d724bca1-ad78-48ee-b6bc-a40c6f818493","keyword":"扩散反应","originalKeyword":"扩散反应"},{"id":"60449542-6039-45d5-8eab-45051c03b6c7","keyword":"固态反应","originalKeyword":"固态反应"}],"language":"zh","publisherId":"clkxygy200003021","title":"高能固态扩散反应研究","volume":"8","year":"2000"},{"abstractinfo":"为获取可用于陶瓷膜支撑体烧结的、粒径分布合理的原料粉体,实验中以粒径500 M的氧化铝粉体为原料,探索其湿法最优条件.在不同磨时间和料比条件下进行,对比效果,测定后粉体的粒径及分布并综合考虑成本因素后得出结论.实验结果表明,料比(9~11)∶1、磨时间9~10 h为最优条件.后续实验则表明,在最优参数下所得粉体粒径较均一,可直接用于烧结耐高温、高强度的陶瓷膜支撑体.","authors":[{"authorName":"刘学文","id":"9f55a908-4a2b-4477-8813-7b31bff5abc5","originalAuthorName":"刘学文"},{"authorName":"郑经堂","id":"d525dd68-0602-4439-8308-4ca93d654149","originalAuthorName":"郑经堂"},{"authorName":"李长海","id":"70f829de-19fe-490a-b9d9-f30c3a0bbf90","originalAuthorName":"李长海"},{"authorName":"吴明铂","id":"e3d590cb-4748-4642-9e6e-ae4797c6bb9a","originalAuthorName":"吴明铂"},{"authorName":"李跃金","id":"a7009c36-f847-4fe0-9d5b-75b431c90723","originalAuthorName":"李跃金"},{"authorName":"贾冬梅","id":"c3a9e3a8-f940-4229-9583-b87b991a4fa5","originalAuthorName":"贾冬梅"}],"doi":"","fpage":"777","id":"f2a2a3ea-2faa-4c45-867a-62cec0ef74b4","issue":"5","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"4c773bd3-57f1-4d17-a8fa-a649deb7fa5e","keyword":"湿法","originalKeyword":"湿法球磨"},{"id":"d1adaab4-3642-4682-ae4f-1085f3f397b9","keyword":"氧化铝粉体","originalKeyword":"氧化铝粉体"},{"id":"78e6f9a9-f7c3-4a61-8437-711081b2a9ad","keyword":"磨时间","originalKeyword":"球磨时间"},{"id":"5a2a69a4-782e-41df-a8e8-827ffd1d38bf","keyword":"料比","originalKeyword":"球料比"}],"language":"zh","publisherId":"gsytb201305001","title":"氧化铝粉体湿法参数优化","volume":"32","year":"2013"}],"totalpage":974,"totalrecord":9734}