{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"为了延长高铝可塑料的保质期,采用粒度为5~3、3~1、≤1、≤0.045 mm的特级矾土、≤2μm的黏土为主要原料,磷酸为结合剂,制备高铝可塑料,并通过添加聚磷酸盐AP、过磷酸盐P2及羟基羧酸盐TP等不同保存剂来提高可塑料的保存期.通过测量可塑料马夏值的变化来衡量可塑料的塑性变化,同时研究了保存剂对可塑料物理性能的影响.结果表明:3种保存剂的加入均能提高可塑料的保存期,并对可塑料其他性能影响较小.其中,加入羟基羧酸盐TP作为保存剂的效果最好,可塑料保存6个月后依然保持较好的塑性.","authors":[{"authorName":"张效峰","id":"44f50c59-6d78-4b41-afae-3983c910c884","originalAuthorName":"张效峰"},{"authorName":"张军","id":"6cc71d30-a424-474b-a5a3-fb16ea5ec721","originalAuthorName":"张军"},{"authorName":"韦祎","id":"9b96ac0a-9562-4416-86ba-afd91ef0125d","originalAuthorName":"韦祎"},{"authorName":"禄向阳","id":"e5d9ee5d-0e90-403e-95a8-2e29ecd5ff8c","originalAuthorName":"禄向阳"},{"authorName":"秦红彬","id":"07ede308-7162-4cd9-831f-5a61abf9514b","originalAuthorName":"秦红彬"},{"authorName":"张三华","id":"93d76daf-d785-4075-9c15-c76d151049f4","originalAuthorName":"张三华"}],"doi":"10.3969/j.issn.1001-1935.2016.04.017","fpage":"304","id":"0377cb5d-938f-45df-a242-5dd83bc14ffe","issue":"4","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"3993070c-efd8-48c1-aed1-69ad3e47da5d","keyword":"高铝可塑料","originalKeyword":"高铝可塑料"},{"id":"4b9c581d-7b02-4226-9d5b-633bc81fd68c","keyword":"保存剂","originalKeyword":"保存剂"},{"id":"b4f9b2e7-4381-4b95-a1d2-98ebb2d94517","keyword":"马夏值","originalKeyword":"马夏值"},{"id":"66a25416-0b4b-4456-b083-c7bd37efc1c9","keyword":"保存期","originalKeyword":"保存期"}],"language":"zh","publisherId":"nhcl201604017","title":"三种保存剂对磷酸结合高铝可塑料性能的影响","volume":"50","year":"2016"},{"abstractinfo":"本工作研究了二氧化硅微粉+铝酸钙水泥(MS+ CAC),二氧化硅微粉+水合氧化铝(MS+ HA),二氧化硅溶胶三种不同结合体系对添加9%硅粉的碳化硅基浇注料1420℃氮化后的冷态耐压强度,冷态和800~1400℃热态抗折强度的影响,应用SEM,XRD和EDAX,分析了不同试样中的物相及显微结构.结果表明,无水泥的结合体系结合的试样氮化后由于基质不含玻璃相,因而高温下更稳定,原位形成的氮化物呈网络状,使1200℃以上强度保持率高;含水泥的结合体系结合的试样基质中有CAS2相,形成的氮化物为粒状或柱状,使热态强度降低显著.","authors":[{"authorName":"王慧芳","id":"8aec34ab-4441-4363-bbd5-7a765243c76a","originalAuthorName":"王慧芳"},{"authorName":"周宁生","id":"8c64eca2-f6f6-44dd-8686-20758989dd55","originalAuthorName":"周宁生"},{"authorName":"张三华","id":"f7f8b219-3f51-4aa2-9631-aa69a73a6bac","originalAuthorName":"张三华"},{"authorName":"毕玉保","id":"bb28614f-8653-46d3-be5d-336297b4089d","originalAuthorName":"毕玉保"}],"doi":"","fpage":"1842","id":"dc79b9ae-d088-4d55-803f-f4e17e0bfa71","issue":"7","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"1c902381-79c6-460a-9040-3755efa94cd0","keyword":"强度","originalKeyword":"强度"},{"id":"6feb0ed6-7f03-438a-9928-6ecbff828b8b","keyword":"结合体系","originalKeyword":"结合体系"},{"id":"9dc3ae79-77d6-417c-a786-bab62b119b4f","keyword":"氮化","originalKeyword":"氮化"},{"id":"0faf5732-ab57-4774-8094-437f048c8962","keyword":"碳化硅","originalKeyword":"碳化硅"},{"id":"0b49ab86-927c-44b3-93e2-2af2cc4bb725","keyword":"浇注料","originalKeyword":"浇注料"}],"language":"zh","publisherId":"gsytb201407052","title":"结合体系对氮化后碳化硅基浇注料冷/热态强度的影响","volume":"33","year":"2014"},{"abstractinfo":"以板状刚玉、铝酸钙水泥、氧化铝微粉和电熔尖晶石细粉(AM70、AM85、AM90)为主要原料,设计了三组 MgO 含量均为1.4%(w)、含不同组成尖晶石的刚玉-尖晶石浇注料,分别经1500℃保温5 h 和1650℃保温5 h 热处理后,研究了尖晶石组成对刚玉-尖晶石浇注料显微结构的影响。结果表明:在热处理过程中,AM70尖晶石与其周围刚玉相发生固溶反应,使尖晶石和刚玉烧结在一起,浇注料中尖晶石、CA6相通过刚玉相以多种结合方式联结;AM85和 AM90尖晶石发生脱溶析出刚玉相,刚玉相再与周围水泥在尖晶石颗粒边缘反应生成 CA6,形成尖晶石-CA6结合,浇注料中尖晶石和刚玉通过 CA6联结。","authors":[{"authorName":"范鹏骁","id":"a19ee6b5-af0b-4eae-85f1-66f6d0d40015","originalAuthorName":"范鹏骁"},{"authorName":"张三华","id":"f046ffa9-3661-433d-99d9-e7145b48fe9b","originalAuthorName":"张三华"},{"authorName":"李志刚","id":"5d4f18ce-2724-443d-8911-4a2305fc748a","originalAuthorName":"李志刚"}],"doi":"10.3969/j.issn.1001-1935.2016.01.011","fpage":"45","id":"5bbd729f-dd07-4085-a95c-53271ea26267","issue":"1","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"fe877ceb-5b74-4ed9-8589-738e75ffc956","keyword":"刚玉-尖晶石浇注料","originalKeyword":"刚玉-尖晶石浇注料"},{"id":"343bedd7-247a-4211-ae06-fb34042954a9","keyword":"尖晶石组成","originalKeyword":"尖晶石组成"},{"id":"46b18968-9a17-45f2-ae3e-4db2f9beef26","keyword":"固溶","originalKeyword":"固溶"},{"id":"61adfd19-9ef6-444a-bbf8-a5493c67b14e","keyword":"脱溶","originalKeyword":"脱溶"}],"language":"zh","publisherId":"nhcl201601012","title":"尖晶石组成对刚玉-尖晶石浇注料显微结构的影响","volume":"50","year":"2016"},{"abstractinfo":"研究了铝酸钙水泥(CAC)+二氧化硅微粉(MS)结合、水硬性氧化铝(HA)+二氧化硅微粉(MS)结合、二氧化硅溶胶结合的3种结合方式对氮化处理后碳化硅浇注料抗热震性和显微结构的影响.结果显示:3种结合方式制备的试样经600、800和1 100℃水冷1次热震后的残余抗折强度和强度保持率都随着温度的升高而降低,但在1 100℃热震后,3种结合方式的试样的残余抗折强度相当,二氧化硅溶胶结合的浇注料具有较好的抗热震性.分析表明,本试验的3种结合体系中,无水泥结合方式的试样中原位生成的SiAlON具有更大的长径比,特别是纤维状的SiAlON,对高温下结构的保持和抗热震性的提高更为有利.","authors":[{"authorName":"王慧芳","id":"d92db568-69de-459d-b394-3b3cc35bcfe4","originalAuthorName":"王慧芳"},{"authorName":"周宁生","id":"cf973e47-cef1-46c2-a08c-8de9dd34c7fc","originalAuthorName":"周宁生"},{"authorName":"张三华","id":"eacb6760-9c26-4bde-b9be-d6e44a446466","originalAuthorName":"张三华"},{"authorName":"胡书禾","id":"1367ca3a-03e4-4ea1-8f5c-66dc5f820836","originalAuthorName":"胡书禾"},{"authorName":"毕玉保","id":"8519b8fb-e4d4-4072-afba-176046481229","originalAuthorName":"毕玉保"},{"authorName":"于仁红","id":"9d7fb3d9-5f28-4d4d-8f96-5f702aea56ac","originalAuthorName":"于仁红"},{"authorName":"孟庆新","id":"dfc9f122-777e-4856-827a-598479cf1bad","originalAuthorName":"孟庆新"}],"doi":"10.3969/j.issn.1001-1935.2012.01.004","fpage":"18","id":"24eeb450-0326-4fa7-882b-13ae9274c880","issue":"1","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"8e5902c7-1f5c-4a43-92bb-6184239f69df","keyword":"抗热震性","originalKeyword":"抗热震性"},{"id":"31fc531a-90f6-4796-8f5b-477ad476abb4","keyword":"显微结构","originalKeyword":"显微结构"},{"id":"b8272f2e-097d-4941-8e51-5f04f4a89305","keyword":"结合方式","originalKeyword":"结合方式"},{"id":"ce7f8763-4c9a-4dce-bb2c-8831fdd9e110","keyword":"氮化","originalKeyword":"氮化"},{"id":"28052e65-0785-4b6a-a0ba-dba63ce511a1","keyword":"碳化硅","originalKeyword":"碳化硅"},{"id":"dd4d5fec-0b2c-4df0-8451-e38127d22676","keyword":"浇注料","originalKeyword":"浇注料"}],"language":"zh","publisherId":"nhcl201201004","title":"结合方式对碳化硅浇注料氮化后抗热震性和显微结构的影响","volume":"46","year":"2012"},{"abstractinfo":"采用坩埚法和浸泡法研究了不同Al2O3含量(质量分数分别为80%~85%、65%~70%、40%~45%、25%~30%)及不同温度(分别为110、800、1 100和1 400 ℃)热处理后的Al2O3-SiO2系浇注料的抗铝液侵蚀性,借助电镜和能谱分析研究了被850 ℃铝液侵蚀后试样的显微结构.结果表明:(1)随着Al2O3含量的增加,Al2O3-SiO2系浇注料的抗铝液侵蚀性增强;(2)在1 100 ℃热处理后,浇注料的抗铝液侵蚀性最差;(3)铝液渗入浇注料内部后,铝液中的Al和Mg与浇注料中的石英和莫来石相发生反应,将SiO2还原成Si,Al和Mg则氧化成Al2O3和MgO,MgO进而与Al2O3反应生成尖晶石,破坏试样的结构;(4)对于Al2O3含量较高的Al2O3-SiO2浇注料,尖晶石富集层较致密,可阻止铝液继续向浇注料内部渗透.","authors":[{"authorName":"张三华","id":"35fb8566-00b2-47e9-b44b-6245522a228d","originalAuthorName":"张三华"},{"authorName":"王战民","id":"4d8d24fe-cba5-4612-9aa7-44d17dd9946d","originalAuthorName":"王战民"},{"authorName":"胡书禾","id":"46363b2f-48eb-495c-9f0a-c206f7756417","originalAuthorName":"胡书禾"},{"authorName":"李少飞","id":"5bfa9247-c074-44e7-a721-1b551ccbcf9e","originalAuthorName":"李少飞"},{"authorName":"石会营","id":"dd59f255-0e58-4b2b-a73b-70b781273bf2","originalAuthorName":"石会营"},{"authorName":"曹喜营","id":"2100cbef-7e10-40e3-a2d5-fa303f2e3520","originalAuthorName":"曹喜营"},{"authorName":"喻枫","id":"e11c5dd2-225f-4c76-b807-69d0fa796806","originalAuthorName":"喻枫"}],"doi":"10.3969/j.issn.1001-1935.2010.01.001","fpage":"1","id":"c784bce4-607c-4fab-8612-6e7f30d238c7","issue":"1","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"c0eb7f2b-aeea-4b6a-8417-2da5cfe60a27","keyword":"铝熔炼炉","originalKeyword":"铝熔炼炉"},{"id":"575d069a-af36-42d3-bcd0-33eec0b1d637","keyword":"Al2O3-SiO2系浇注料","originalKeyword":"Al2O3-SiO2系浇注料"},{"id":"cd6207cb-8a42-483a-9632-90de6f9a3319","keyword":"抗铝液侵蚀性","originalKeyword":"抗铝液侵蚀性"},{"id":"c9dbdf46-3123-4002-8bd1-6870acb8c744","keyword":"Al2O3含量","originalKeyword":"Al2O3含量"},{"id":"dafe4694-6613-4522-b1df-382a0bf6d50c","keyword":"热处理温度","originalKeyword":"热处理温度"}],"language":"zh","publisherId":"nhcl201001001","title":"Al2O3含量及热处理温度对Al2O3-SiO2系浇注料抗铝液侵蚀性的影响","volume":"44","year":"2010"},{"abstractinfo":"镁尖晶石浇注料经坩埚法抗渣后,残存试样可以分为四个段带,即挂渣层、侵蚀层、铁渗透层和硅酸盐相富集层.本实验采用SEM和EDAX研究了各段带的显微结构和基质组成,讨论了转炉终渣对浇注料的侵蚀过程和机理.","authors":[{"authorName":"丰文祥","id":"cea23093-acc5-4848-a978-0e70f5bc735b","originalAuthorName":"丰文祥"},{"authorName":"钟香崇","id":"4930ac00-f84d-4a10-99ea-621466e3f9df","originalAuthorName":"钟香崇"},{"authorName":"张三华","id":"7fbfe408-e9b7-4dbd-a1c7-1af4dc52e21e","originalAuthorName":"张三华"},{"authorName":"周宁生","id":"6fbea7fd-bcb5-452a-84ba-5155756d22e7","originalAuthorName":"周宁生"}],"doi":"10.3969/j.issn.1001-1935.2000.01.003","fpage":"13","id":"1433c7f1-c394-4159-a71e-ffb6e7666c6b","issue":"1","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"0a89e0c4-58e2-4912-bc11-9ffc8c13b0ac","keyword":"方镁石","originalKeyword":"方镁石"},{"id":"3a015ef7-c56e-47ba-a8c6-9f06c7f37b09","keyword":"尖晶石","originalKeyword":"尖晶石"},{"id":"ae9b1214-4483-486b-90bf-45dcc811eaf6","keyword":"浇注料","originalKeyword":"浇注料"},{"id":"adfc1742-7116-43a0-aea1-bf9f21f9a70b","keyword":"渣蚀机理","originalKeyword":"渣蚀机理"}],"language":"zh","publisherId":"nhcl200001003","title":"镁尖晶石浇注料渣蚀行为与机理的研究","volume":"34","year":"2000"},{"abstractinfo":"以黑碳化硅、烧结白刚玉粉(WFA),二氧化硅微粉(MS),氧化铝微粉(RA),铝酸钙水泥(CAC)作为主原料,添加不同比例的金属硅粉,采用振动浇注+高温氮化的工艺制备了碳化硅基耐火材料.研究了金属硅含量分别为5%、7%、9%,氮化温度分别为1300℃、1420℃、1500℃对试样冷/热态抗折强度、物相组成和显微结构的影响.结果表明:试样的冷态和热态强度随氮化温度的增加和原料中金属硅含量的增加而增加.1420℃氮化后,原料中金属硅含量为7%和9%的试样,1200℃的热态强度都可超过50MPa.原位形成的大量氮化物将颗粒与基质结合,形成网络结构.氮化物的形成及其结构对提高冷态和热态强度起决定作用.","authors":[{"authorName":"王慧芳","id":"07d00e95-e2c7-4045-9332-55d7d4fad763","originalAuthorName":"王慧芳"},{"authorName":"周宁生","id":"b712bdcc-1a11-410a-942b-daf3613cfd95","originalAuthorName":"周宁生"},{"authorName":"张三华","id":"fb2a180c-29a9-45b3-8444-87772ab6874d","originalAuthorName":"张三华"},{"authorName":"毕玉保","id":"3a503b04-2ea9-4602-83d9-dd1c09e23aa3","originalAuthorName":"毕玉保"},{"authorName":"祁琪","id":"778c7950-bdd7-4afb-a51e-0a209516e6fa","originalAuthorName":"祁琪"}],"doi":"10.3969/j.issn.1001-4381.2010.z2.121","fpage":"441","id":"14e258cf-6d55-4006-a656-ef9540242315","issue":"z2","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"dba61152-903c-4cbd-bfbc-f9d0718ac996","keyword":"振动浇注成形","originalKeyword":"振动浇注成形"},{"id":"e17dbe4c-0347-4d37-8287-545ec21e8f03","keyword":"氮化","originalKeyword":"氮化"},{"id":"4d661f9f-6331-4799-b69d-1449cbae2836","keyword":"碳化硅","originalKeyword":"碳化硅"},{"id":"5fc5cf8f-e03f-4735-9568-0f623be48a45","keyword":"热态抗折强度","originalKeyword":"热态抗折强度"},{"id":"5a0bfd1d-eaab-4c86-b0fc-761be2f5d50f","keyword":"显微结构","originalKeyword":"显微结构"}],"language":"zh","publisherId":"clgc2010z2121","title":"振动浇注成形的高强度碳化硅基耐火材料","volume":"","year":"2010"},{"abstractinfo":"采用特级矾土、黏土为主要原料,液体磷酸盐做结合剂,制备了6种满足不同施工方式的w(Al2O3)>70%的高铝可塑料,并采用马夏值测定仪测定了可塑料的可塑性.结果表明:马夏值测定法可以用于耐火可塑料的可塑性测定,而且其检测范围更宽,可测定采用橡皮锤人工捣打或风镐机械捣打等不同施工方式的可塑料的可塑性.橡皮锤人工捣打可塑料的马夏值范围为1.36~3.74 MPa,风镐机械捣打可塑料的马夏值范围为7.1~22 MPa.","authors":[{"authorName":"曹喜营","id":"75c4caa4-cb66-4650-9067-a96802cbd298","originalAuthorName":"曹喜营"},{"authorName":"张三华","id":"43ffecdb-33e9-4587-943d-7c3cca4ceb55","originalAuthorName":"张三华"},{"authorName":"石会营","id":"74153ff2-9fb1-4c8a-ab01-11ea89d857bb","originalAuthorName":"石会营"},{"authorName":"王金相","id":"2a1842f6-d156-4294-9978-b13ab33937d2","originalAuthorName":"王金相"},{"authorName":"洪彦若","id":"1ba110b1-55eb-4bdb-9617-fa7f68da0f6e","originalAuthorName":"洪彦若"},{"authorName":"李再耕","id":"bf228091-639a-406c-979b-de66faebbf18","originalAuthorName":"李再耕"}],"doi":"10.3969/j.issn.1001-1935.2009.06.015","fpage":"456","id":"1f9ca5f2-d90c-4817-a0ea-f1443735996c","issue":"6","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"c6527163-0345-4f02-86c3-414f7ac5e25e","keyword":"耐火可塑料","originalKeyword":"耐火可塑料"},{"id":"17abe30e-e375-4791-90c4-3902889717d3","keyword":"马夏值","originalKeyword":"马夏值"},{"id":"e85deede-fb42-4f63-94ec-fc04241724db","keyword":"可塑性","originalKeyword":"可塑性"},{"id":"6b06311f-183d-4f12-956d-3348733d141c","keyword":"施工方法","originalKeyword":"施工方法"}],"language":"zh","publisherId":"nhcl200906015","title":"耐火可塑料马夏值的测定","volume":"43","year":"2009"},{"abstractinfo":"简要介绍了铝熔炼炉的主要类型和冶炼工艺,分析了使用条件,讨论了炉衬耐火材料的使用要求,重点阐述了铝熔炼炉用耐火材料的研究开发和应用情况.","authors":[{"authorName":"王战民","id":"8eab0f61-b2f5-4451-8a41-5826e1d2aa5e","originalAuthorName":"王战民"},{"authorName":"曹喜营","id":"0cfe4325-d3f2-4681-9078-1e6c572b9ab6","originalAuthorName":"曹喜营"},{"authorName":"张三华","id":"5c9ca518-c9c4-4c2e-a4f6-f82a89657d69","originalAuthorName":"张三华"},{"authorName":"石会营","id":"80a11872-8ed7-4196-a299-b4679f463f64","originalAuthorName":"石会营"},{"authorName":"李少飞","id":"c41b75ca-c727-4b6a-86c8-9cb407ac0450","originalAuthorName":"李少飞"},{"authorName":"胡书禾","id":"60e22c2c-6498-4f14-9c60-9fd587f56501","originalAuthorName":"胡书禾"}],"doi":"10.3969/j.issn.1001-1935.2014.01.001","fpage":"1","id":"2b45c7a3-d958-4ac6-951a-6767e0dd1e08","issue":"1","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"22405882-f4d8-4b32-b5ad-1a3548ca1d71","keyword":"铝熔炼炉","originalKeyword":"铝熔炼炉"},{"id":"3f2d4152-f6bd-4ae2-a5bd-42e19dbfe439","keyword":"耐火材料","originalKeyword":"耐火材料"},{"id":"5c81d60e-00fe-4540-ab89-8073afc6f2fd","keyword":"发展","originalKeyword":"发展"},{"id":"3c536677-62eb-4b74-898d-3c3d30d3b4b7","keyword":"研究","originalKeyword":"研究"},{"id":"efb654f9-b5ba-4c2e-9f0c-a5361552aa3b","keyword":"应用","originalKeyword":"应用"}],"language":"zh","publisherId":"nhcl201401001","title":"铝熔炼炉用耐火材料的现状和发展","volume":"48","year":"2014"},{"abstractinfo":"分别以电熔镁砂和4种石墨碳源——用电熔镁砂和鳞片石墨制成的w(C)≈35%的造粒石墨(PG)、w(C) =98.34%的焦炭石墨(CG)、w(C) =99.08%的电极石墨(EG)、废镁碳砖(MC)为原料,制备了碳含量均为5%(w)左右的MgO-C浇注料,研究了不同石墨碳源对浇注料物理性能、抗氧化性能和抗渣性能的影响.结果表明:加入适量石墨碳源可以显著提高镁质浇注料的抗渣渗透性;含PG、CG和EG的MgO-C浇注料比含MC的显气孔率低,强度更高,抗氧化性更好;与石墨化程度较低的CG、EG相比,含鳞片石墨的PG、MC更有利于MgO-C浇注料抗渣性能的提高,并且石墨以细小鳞片状的形式在基质中均匀分布对抗渣性非常有利.","authors":[{"authorName":"王冠","id":"a85bdbfc-013c-4340-a12c-c88ee801f4e8","originalAuthorName":"王冠"},{"authorName":"张三华","id":"a6831ec8-dfb8-4f13-b008-8b9b5c2a8cb0","originalAuthorName":"张三华"},{"authorName":"张新","id":"71f377d7-a8fb-453a-a850-f97cf8c73aca","originalAuthorName":"张新"},{"authorName":"韦祎","id":"ba265476-5c40-4e79-89b3-e588ad63965b","originalAuthorName":"韦祎"}],"doi":"","fpage":"417","id":"2d9ede5b-328e-4a80-b4af-07d0098eb17a","issue":"6","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"e769f8ed-123a-4397-86d0-c649c25877b1","keyword":"石墨碳源","originalKeyword":"石墨碳源"},{"id":"1327a8e1-5b79-4f4a-8366-b948f1c33911","keyword":"MgO-C浇注料","originalKeyword":"MgO-C浇注料"},{"id":"d948e20f-73e3-4c06-9d85-7de7f7a8c183","keyword":"抗氧化性","originalKeyword":"抗氧化性"},{"id":"b71c749f-c019-4101-9503-08c7d4a96e81","keyword":"抗渣性","originalKeyword":"抗渣性"}],"language":"zh","publisherId":"nhcl201206005","title":"不同石墨碳源对MgO-C浇注料性能的影响","volume":"46","year":"2012"}],"totalpage":2278,"totalrecord":22779}