{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以苯乙烯、偶氮二异丁腈(AIBN)和硬脂酸丁酯相变微胶囊(MCPCM)为原料,采用本体聚合法制备聚苯乙烯基相变微胶囊(MCPCM/PS)储热复合材料.研究了MCPCM含量对MCPCM/PS复合材料储热性能、传热性能及宏观力学性能的影响.结果表明,MCPCM/PS复合材料具有储热功能,随MCPCM含量增加相变潜热增大,导热系数减小,传热速率变缓,玻璃化转变温度(Tg)降低,断裂强度减小,伸长率增大,当MCPCM为25%(质量分数)时,相变温度为25~28℃,相变潜热为31.8 J/g,导热系数为0.0210W/(m·K),Tg=59.13℃.","authors":[{"authorName":"崔锦峰","id":"19b2c44c-edf1-431d-9a9f-a40df9e796e6","originalAuthorName":"崔锦峰"},{"authorName":"李淑慧","id":"b73849b1-1af3-4d3f-8747-5a7d1bc15d62","originalAuthorName":"李淑慧"},{"authorName":"张鹏中","id":"ca1b4fdb-6da8-4eb2-81ad-dc1711e4683b","originalAuthorName":"张鹏中"},{"authorName":"包雪梅","id":"aff59e8f-0e1c-4859-b818-9caf0660d838","originalAuthorName":"包雪梅"},{"authorName":"慕波","id":"e61f14e8-1ace-4f52-a3bd-a0f6267d4bc2","originalAuthorName":"慕波"},{"authorName":"李敏睿","id":"40a2b718-ef97-4950-8e2d-2173fd01c1d3","originalAuthorName":"李敏睿"},{"authorName":"杨保平","id":"3e31a569-5e56-424a-9b78-c3a747f63a9d","originalAuthorName":"杨保平"},{"authorName":"郭军红","id":"0e4d4860-d57b-4baf-9c68-586c32cacb6f","originalAuthorName":"郭军红"}],"doi":"10.3969/j.issn.1001-9731.2016.01.042","fpage":"1199","id":"115ec843-421c-4242-b903-015f45e9347a","issue":"1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"b6194e09-e8f2-4a2d-9943-4424dadf51ee","keyword":"相变微胶囊","originalKeyword":"相变微胶囊"},{"id":"bbaf1c7a-37f9-4d06-a0fa-d619cb95382d","keyword":"聚苯乙烯","originalKeyword":"聚苯乙烯"},{"id":"f6c9ffbf-e684-4e9c-873b-0ebbfc7ef1f6","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"5de07465-0b90-47cf-8509-4f8e6cfaad1b","keyword":"储热性能","originalKeyword":"储热性能"},{"id":"3ee4306e-1722-4be5-a845-579998ae69f8","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"gncl201601042","title":"聚苯乙烯基相变微胶囊储热复合材料的制备及性能研究","volume":"47","year":"2016"},{"abstractinfo":"铝基合金相变储热材料具有导热系数大、热稳定较好、相变体积变化小、储热密度较大等优点,在高温储热应用方面具有很大优势.总结了铝基合金相变储热材料在储热性能、储热基础理论、容器相容性、铁基容器腐蚀机理和防护措施等方面的研究现状和发展趋势,指出了其中存在的一些不足,展望了今后的研究和发展方向.","authors":[{"authorName":"许骏","id":"da131254-0911-4053-9859-2709f6cb103c","originalAuthorName":"许骏"},{"authorName":"于思荣","id":"28d1c964-cb49-44c6-b4ad-03fe4521bfc5","originalAuthorName":"于思荣"}],"doi":"","fpage":"93","id":"d4be01b4-dc2f-43c8-8bbe-6493baba372c","issue":"19","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"6f557ca5-9d78-421c-b814-861e83872e9e","keyword":"铝基合金","originalKeyword":"铝基合金"},{"id":"69e4366a-236c-415c-ba1f-d8ea6770737b","keyword":"相变储热材料","originalKeyword":"相变储热材料"},{"id":"6de8e7eb-692a-4692-9dc9-452515cac11f","keyword":"储热性能","originalKeyword":"储热性能"},{"id":"981b89cf-e85f-44e5-bcc1-e6a5ffc19540","keyword":"基础理论研究","originalKeyword":"基础理论研究"},{"id":"9e94c140-7935-4e7e-9134-aba0bff2e0e6","keyword":"腐蚀与防护","originalKeyword":"腐蚀与防护"}],"language":"zh","publisherId":"cldb201319020","title":"铝基合金相变储热材料的研究现状与发展趋势","volume":"27","year":"2013"},{"abstractinfo":"以三聚氰胺改性的脲醛树脂为囊壁,通过原位聚合法分别对非离子型和阴离子型石蜡乳液进行包覆,制备微胶囊.研究结果表明,采用由硬脂酸和氨水制备得到的阴离子型石蜡乳液为囊芯材料,囊芯与囊壁质量比为1.6时,包覆率达52.41%,囊壁可提供良好的热传导能力.制备得到的微胶囊热焓值为166 J/g,具有较好的相变储能效果.","authors":[{"authorName":"铁迪","id":"e7a801b0-6d43-42f7-bbcc-f72dcf2dcc5e","originalAuthorName":"铁迪"},{"authorName":"夏茹","id":"d18cbde7-f978-4731-85ab-c406c60d75a1","originalAuthorName":"夏茹"},{"authorName":"郝家宝","id":"4f9c0791-f356-4afe-aa98-be3422ad4748","originalAuthorName":"郝家宝"},{"authorName":"陈鹏","id":"d121d1c2-db52-455a-bf7b-f623bac70886","originalAuthorName":"陈鹏"},{"authorName":"钱家盛","id":"a39ab430-bf39-4f59-8bac-58da2803413f","originalAuthorName":"钱家盛"},{"authorName":"苗继斌","id":"f4a6b069-48e0-48d4-9f17-c049e3ec5e34","originalAuthorName":"苗继斌"}],"doi":"10.3969/j.issn.1001-9731.2015.15.028","fpage":"15142","id":"f342a6a4-c301-4bdb-99d1-502dac534a3a","issue":"15","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"070890fc-17df-4dd1-a881-687268926ff0","keyword":"石蜡乳液","originalKeyword":"石蜡乳液"},{"id":"96fa8641-e7aa-41eb-8b80-8448f2fb3595","keyword":"脲醛树脂","originalKeyword":"脲醛树脂"},{"id":"fb7e86d6-5e2d-46d5-93a2-8aa24951abfb","keyword":"相变微胶囊","originalKeyword":"相变微胶囊"},{"id":"1d541297-6278-4c36-9a5b-de238b79490e","keyword":"储热性能","originalKeyword":"储热性能"}],"language":"zh","publisherId":"gncl201515028","title":"改性脲醛树脂-石蜡相变储能微胶囊的制备及表征","volume":"","year":"2015"},{"abstractinfo":"以单硬脂酸甘油酯(GMS )为固液相变材料,以聚对苯二甲酸乙二酯(PET)纤维为支撑材料,通过静电纺丝方法成功制备了新型的 GMS/PET 定形相变复合纤维.FE-SEM观察显示随着定形相变复合纤维中 GMS 含量的增加,纤维直径逐渐增大且直径分布更广,纤维交叉点之间也出现粘连.XRD分析结果表明,静电纺丝过程中 GMS 和 PET 纤维基体能够很好地结合,由于PET纤维基体的支撑保护作用阻碍了GMS的结晶,导致结晶度下降. DSC 分析结果表明,静电纺GMS/PET定形相变复合纤维是一种相变过程完全可逆的储能材料,其相变焓值随着纤维中GMS含量的增加而逐渐增大,相变焓效率>85%.在DSC热循环测试过程中定形相变复合纤维的相变温度和相变焓值几乎没有变化,表明了该材料具有良好的热循环稳定性.","authors":[{"authorName":"柯惠珍","id":"dddf6393-b547-4f0c-841c-e07ee753258c","originalAuthorName":"柯惠珍"},{"authorName":"逄增媛","id":"59f65abe-1e64-4230-8b00-dc10f299d4f0","originalAuthorName":"逄增媛"},{"authorName":"宗雪","id":"ba8648d3-8602-44b2-96ee-d88d8b4d3141","originalAuthorName":"宗雪"},{"authorName":"魏取福","id":"d5b70c0c-d004-4639-9985-12b049621bb0","originalAuthorName":"魏取福"},{"authorName":"蔡以兵","id":"159a7884-3753-47f2-a210-06c7a928d233","originalAuthorName":"蔡以兵"},{"authorName":"黄锋林","id":"b43fb7d0-8165-43da-8174-46b86cd868ec","originalAuthorName":"黄锋林"}],"doi":"10.3969/j.issn.1001-9731.2014.11.011","fpage":"11051","id":"bb6e55e5-27c5-4f49-a9b3-66c297375729","issue":"11","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"43081fe3-a2b0-4d69-a2b7-623c50fc32e5","keyword":"单硬脂酸甘油酯","originalKeyword":"单硬脂酸甘油酯"},{"id":"77820e24-8780-4ecc-b66f-8815b974d707","keyword":"静电纺丝","originalKeyword":"静电纺丝"},{"id":"e36fc107-fcca-41b3-b109-a775d441818e","keyword":"定形相变复合纤维","originalKeyword":"定形相变复合纤维"},{"id":"c191a4ac-80d6-475b-a994-8dd32020b9a3","keyword":"形貌结构","originalKeyword":"形貌结构"},{"id":"c7fb33d4-febf-4d41-8820-abdbfb274f5f","keyword":"储热性能","originalKeyword":"储热性能"}],"language":"zh","publisherId":"gncl201411011","title":"负载脂肪酸酯的定形相变复合纤维的制备与性能研究","volume":"","year":"2014"},{"abstractinfo":"通过静电纺丝方法成功制备了新型的月桂酸-硬脂酸(LA-SA)/聚对苯二甲酸乙二酯(PET)定形相变复合纤维.场发射扫描电子显微镜(FE-SEM)观察结果显示,随着LA-SA含量的增加,纤维表面的褶皱越来越明显,且纤维直径逐渐增大.差示扫描量热(DSC)分析结果显示,随着LA-SA在纤维中比例的增大,复合纤维的相变温度变化不大,相变焓值逐渐增加.DSC热循环测试结果表明,静电纺LA-SA/PET复合相变纤维是一种相变过程完全可逆的定形相变材料,可以在环境中循环使用.热重(TGA)分析结果表明,LA-SA/PET复合相变纤维分别在135℃~240℃和325℃~ 500℃温度范围内发生热降解,在相变温度范围(< 100℃)内具有良好的热稳定性.","authors":[{"authorName":"柯惠珍","id":"471bb6ce-0a6c-4e56-b539-336d9096c2bf","originalAuthorName":"柯惠珍"},{"authorName":"李大伟","id":"407a61ad-4a3b-449e-a5e1-06f980ac78d1","originalAuthorName":"李大伟"},{"authorName":"陈剑杨","id":"ed9b2475-25ea-4c91-a5db-33cb393f5556","originalAuthorName":"陈剑杨"},{"authorName":"魏取福","id":"4a4d52ec-d49b-4c84-b929-d65fc7844c9f","originalAuthorName":"魏取福"},{"authorName":"蔡以兵","id":"95b93ee8-6648-4d06-b446-4abc374fd10d","originalAuthorName":"蔡以兵"},{"authorName":"黄锋林","id":"48e4895a-e41e-49cd-a8ea-2b3bde3722f9","originalAuthorName":"黄锋林"}],"doi":"","fpage":"155","id":"d5bb3f46-12b0-4415-85c5-f8d90ab7a35a","issue":"2","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"90625ce2-b350-4a9b-b884-a2184b372bea","keyword":"静电纺丝","originalKeyword":"静电纺丝"},{"id":"33478663-79eb-466f-b897-bf9a11578a72","keyword":"复合相变纤维","originalKeyword":"复合相变纤维"},{"id":"a0d48559-9cbc-438f-8e18-3daf177c98e7","keyword":"月桂酸-硬脂酸低共熔物","originalKeyword":"月桂酸-硬脂酸低共熔物"},{"id":"ea997e83-50dc-44b6-8600-43408c39a8c6","keyword":"形貌","originalKeyword":"形貌"},{"id":"ef352586-1449-4dd5-98e1-1d6b5c503e77","keyword":"储热性能","originalKeyword":"储热性能"},{"id":"bd763a42-7a78-4246-8e7b-3b31cb65f520","keyword":"热稳定性","originalKeyword":"热稳定性"}],"language":"zh","publisherId":"gfzclkxygc201302039","title":"静电纺复合相变纤维的制备与热性能","volume":"29","year":"2013"},{"abstractinfo":"以不同分子量聚乙二醇(PEG)、4,4'-二苯基甲烷二异氰酸酯(MDDI)、1,4-丁二醇(BDO)为原料,采用两步法合成了一系列聚氨酯类材料.通过热重分析(TG)、傅立叶红外光谱仪(FT-IR)确定其化学组成,通过偏光显微镜(POM)、X射线衍射(XRD)进行了材料形态结构分析.同时,改变聚乙二醇在材料中所占质量分数得到一系列材料,利用差示扫描量热分析(DSC)发现随聚乙二醇分子量增大,材料相变焓增大,相变温度升高.考察其相变行为发现当聚乙二醇所占质量分数低于91%时,材料呈固-固相变,相变过程为晶态-无定型态的一级相变,且随聚乙二醇质量分数增加,相变焓增加,硬度降低,拉伸强度增加.","authors":[{"authorName":"高毅","id":"45750295-046a-4f14-9601-c383d815dd66","originalAuthorName":"高毅"},{"authorName":"田春蓉","id":"c23f1b1e-db7f-40b1-87c8-a0249f965f6a","originalAuthorName":"田春蓉"},{"authorName":"王建华","id":"c87533b6-6557-4223-bfa5-0cab65524d60","originalAuthorName":"王建华"}],"doi":"","fpage":"446","id":"bb6a6d48-c90e-40ed-91c4-e28c96558278","issue":"z3","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"bc202b9d-15a0-4c4b-b7dc-e259f5235aeb","keyword":"聚乙二醇","originalKeyword":"聚乙二醇"},{"id":"4af3ffdb-c913-4c80-9f71-bc3db461aebd","keyword":"聚氨酯","originalKeyword":"聚氨酯"},{"id":"52e6642d-87c0-4571-b829-ccf629d264bd","keyword":"储热性能","originalKeyword":"储热性能"},{"id":"51e35ea3-2b05-4f69-a4df-c0ca927edf6a","keyword":"固-固相变","originalKeyword":"固-固相变"}],"language":"zh","publisherId":"gncl2011z3018","title":"聚乙二醇对嵌段聚氨酯型固-固相变储能材料的影响及性能分析","volume":"42","year":"2011"},{"abstractinfo":"采用静电纺丝技术成功制备了以5种脂肪酸二元低共熔混合物(LA-MA、LA-SA、MA-PA、MA-SA、PA-SA)为固液相变材料,聚对苯二甲酸乙二酯(PET)为支撑材料的定形相变复合纤维。研究了不同种类的脂肪酸二元低共熔物对复合相变纤维的形貌结构、储热性能以及力学性能的影响。研究结果表明这5种定形相变复合纤维的表面均呈现褶皱的形貌特征,同时纤维直径也明显增大。热分析结果表明当改变纤维中脂肪酸二元低共熔物的种类时,复合相变纤维的熔化温度和熔化焓值均随之而变化,其中熔化温度最低为33.23℃,最高为52.82℃,熔化焓值最低为62.75kJ/kg,最高为94.76kJ/kg。力学性能测试结果表明,由于脂肪酸二元低熔物的加入复合相变纤维的拉伸强度减小,断裂伸长率增大。","authors":[{"authorName":"柯惠珍","id":"8f63591b-debf-4e12-b7c1-0a56ffca37ef","originalAuthorName":"柯惠珍"},{"authorName":"张慧丹","id":"b2fbb178-dd53-4aff-9f34-ef2c26512439","originalAuthorName":"张慧丹"},{"authorName":"李大伟","id":"c768ad42-2e2a-47ca-ba12-a571c5c00950","originalAuthorName":"李大伟"},{"authorName":"魏取福","id":"a5b185b6-63a7-40c4-8e12-b6a080b90e4d","originalAuthorName":"魏取福"},{"authorName":"蔡以兵","id":"afb2ffd2-3021-442c-8fa8-b2f8daded7f1","originalAuthorName":"蔡以兵"},{"authorName":"黄锋林","id":"7163f908-ba85-49d9-afea-119c64106e1d","originalAuthorName":"黄锋林"},{"authorName":"廖师琴","id":"a38c2aa9-b888-47ff-8d2e-1cb448847ed3","originalAuthorName":"廖师琴"}],"doi":"","fpage":"2045","id":"9104c3d2-6502-461d-a26a-b58cd69ff4d1","issue":"15","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"5b446987-cd76-44d9-ab36-2b66dbd0d129","keyword":"静电纺丝","originalKeyword":"静电纺丝"},{"id":"c11929e1-4813-435d-8f27-0842f70dcf4d","keyword":"复合相变纤维","originalKeyword":"复合相变纤维"},{"id":"a5ce865d-7ce6-4959-a8eb-5e9e904fbb70","keyword":"脂肪酸低共熔物","originalKeyword":"脂肪酸低共熔物"},{"id":"53424da9-1ec1-4f03-8dcb-a31dd8255bb8","keyword":"形貌","originalKeyword":"形貌"},{"id":"1dccf98a-7458-480b-a94f-923f8ac61a79","keyword":"储热性能","originalKeyword":"储热性能"},{"id":"cbda3085-99ed-4bdf-9876-d51c2f627d7a","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"gncl201215018","title":"PET基定形相变复合纤维的制备","volume":"43","year":"2012"},{"abstractinfo":"脂肪酸类相变材料具有良好的热物理性能、热稳定性和化学稳定性,是一类储热性能优良、易于与建筑形成一体化的有机相变材料,通过与传统的建筑材料复合可有效降低建筑能耗,起到建筑节能和调整建筑室内环境舒适度的作用.综述了脂肪酸类相变材料的研究进展及其在建筑中的主要应用情况,并对目前脂肪酸类相变材料在建筑中应用所存在的问题进行了总结.最后对其进一步的发展做了分析和展望.","authors":[{"authorName":"陈亮","id":"a2f4e9b0-1067-4ccb-bba6-fcec4967f2a5","originalAuthorName":"陈亮"},{"authorName":"朱孝钦","id":"2f438eaf-3fbb-4bae-b109-be9e7195d70c","originalAuthorName":"朱孝钦"},{"authorName":"胡劲","id":"f1be64cf-6fae-483a-8683-24dcc683e665","originalAuthorName":"胡劲"},{"authorName":"兰阳","id":"c666c49f-1b99-4aa2-9b6c-e5e68c6399b4","originalAuthorName":"兰阳"},{"authorName":"别玉","id":"3be0c4ec-f077-461f-874c-e31d5eedba70","originalAuthorName":"别玉"},{"authorName":"王富国","id":"2cf4cf14-b52b-45ae-9e2f-b97307f5b234","originalAuthorName":"王富国"}],"doi":"10.11896/j.issn.1005-023X.2016.07.016","fpage":"91","id":"be83be54-921f-4ca3-b06f-51aeb8931a7c","issue":"7","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"7235aed6-f450-4064-9e01-a49eda1e3053","keyword":"脂肪酸","originalKeyword":"脂肪酸"},{"id":"3d2a2557-b408-4d17-88b3-8bf3d643d48c","keyword":"储热性能","originalKeyword":"储热性能"},{"id":"dd081a41-c957-44e8-b478-a8b04c528ef3","keyword":"建筑节能","originalKeyword":"建筑节能"}],"language":"zh","publisherId":"cldb201607016","title":"与建筑一体化脂肪酸类相变材料的研究及应用","volume":"30","year":"2016"},{"abstractinfo":"对Si含量为10\\%$\\sim$13\\%的Al--Si合金进行了加速氧化、热循环和掺Fe实验,\n研究了其在不同热循环条件下的相变储热性能和可靠性. 结果表明,\n在空气中经几百h的高温氧化后, 氧化率小于0.01\\%, 其影响可以忽略不计.\n经过0, 4, 23, 60, 100, 200, 300, 400, 500, 600, 700次熔化-凝固循环后,\n相变温度的变化为3.8$\\sim$11.8℃, 相变潜热从484.86 kJ/kg下降到432.62 kJ/kg.\n当Al--Si合金的掺铁量为0.5\\%时, 相变潜热下降6.5\\%; 对于缓冷的储能过程,\n偏析较小并在循环多次后趋于缓和和稳定.\nAl--Si合金成份和结构的变化对材料的储热性能影响较小,\n在长期的热循环过程中有良好和稳定的储热性能.\\","authors":[{"authorName":"张仁元","id":"da219d6b-7cb4-44c3-bf94-127d5fbb0734","originalAuthorName":"张仁元"},{"authorName":"孙建强","id":"8b45a8e5-77f2-49b1-90d5-58f459055c66","originalAuthorName":"孙建强"},{"authorName":"柯秀芳","id":"a9e5581e-8804-495a-b09f-d02691057485","originalAuthorName":"柯秀芳"},{"authorName":"周晓霞","id":"ea47354f-4359-4917-a6c4-40518edd131e","originalAuthorName":"周晓霞"}],"categoryName":"|","doi":"","fpage":"156","id":"e4dde80c-1768-44db-9138-3e1a1a957ca2","issue":"2","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"744c0126-7f64-439d-a42a-be06b8ea7574","keyword":"金属材料","originalKeyword":"金属材料"},{"id":"20ecf573-3a30-4f77-a76f-214b036b134c","keyword":"null","originalKeyword":"null"},{"id":"b02a7aba-2391-4462-9d1a-3e87886d6321","keyword":"null","originalKeyword":"null"},{"id":"87df4bb6-74a3-4756-a266-9909e29df774","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"1005-3093_2006_2_9","title":"Al--Si合金的储热性能","volume":"20","year":"2006"},{"abstractinfo":"对Si含量为10%~13%的Al-Si合金进行了加速氧化、热循环和掺Fe实验,研究了其在不同热循环条件下的相变储热性能和可靠性.结果表明,在空气中经几百h的高温氧化后,氧化率小于0.01%,其影响可以忽略不计.经过0,4,23,60,100,200,300,400,500,600,700次熔化-凝固循环后,相变温度的变化为3.8~11.8℃,相变潜热从484.86 kJ/kg下降到432.62 kJ/kg.当Al-Si合金的掺铁量为0.5%时,相变潜热下降6.5%;对于缓冷的储能过程,偏析较小并在循环多次后趋于缓和和稳定.Al-Si合金成份和结构的变化对材料的储热性能影响较小,在长期的热循环过程中有良好和稳定的储热性能.","authors":[{"authorName":"张仁元","id":"da0b1e4d-c19d-4d76-a0e2-c034e8c848a6","originalAuthorName":"张仁元"},{"authorName":"孙建强","id":"97a30213-6e50-4157-a8a1-835c9dc364a2","originalAuthorName":"孙建强"},{"authorName":"柯秀芳","id":"19b2ccbd-90c1-4ddc-bf1d-a363e569253d","originalAuthorName":"柯秀芳"},{"authorName":"周晓霞","id":"dbff5577-c1e2-4b5a-b16b-bac999b56629","originalAuthorName":"周晓霞"}],"doi":"10.3321/j.issn:1005-3093.2006.02.009","fpage":"156","id":"053287da-3a4d-4c1c-845b-e30a3c29e8dd","issue":"2","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"0b46d107-8a33-4506-9bae-1b660d803b63","keyword":"金属材料","originalKeyword":"金属材料"},{"id":"1544173c-048b-4077-ac43-0e8defc0b815","keyword":"铝硅合金","originalKeyword":"铝硅合金"},{"id":"ac054539-310d-4f13-b1b2-d282e9383349","keyword":"相变材料(PCMs)","originalKeyword":"相变材料(PCMs)"},{"id":"4859cbc4-845b-434b-bb7b-8f3d21e77a4d","keyword":"潜热","originalKeyword":"潜热"}],"language":"zh","publisherId":"clyjxb200602009","title":"Al-Si合金的储热性能","volume":"20","year":"2006"}],"totalpage":8752,"totalrecord":87513}