欢迎登录材料期刊网

材料期刊网

高级检索

  • 论文(1)
  • 图书()
  • 专利()
  • 新闻()

基于自适应神经模糊推理系统的板形模式识别

张秀玲 , 逄宗鹏 , 李少清 , 贾春玉

钢铁研究学报

针对传统的最小二乘板形模式识别方法的抗干扰能力差、精度低和神经网络方法存在网络学习时间长、易陷入局部最小值等问题,把模糊理论和神经网络的优点融合在一起,通过三个自适应神经模糊推理系统的有效拟合,提出了一种基于自适应神经模糊推理系统的板形模式识别方法.研究结果表明,该方法能够很好地克服以上缺点,而且能够有效识别出常见的板形缺陷,识别速度和精度有所提高,识别结果跟板形仪的实测板形也非常接近.

关键词: 板形 , 模式识别 , 自适应神经模糊推理系统

出版年份

刊物分类

相关作者

相关热词