{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"制备超细、高性能ZrO2纤维是实现其在催化、能源及环境等领域工程应用的关键.静电纺丝技术是一种近年来兴起的氧化物陶瓷纳米纤维制备新方法,能够制备直径较小、均一性高、连续性好的ZrO2纳米纤维,并且可通过控制前驱体纺丝液组成、静电纺丝工艺及热处理参数,对ZrO2纤维的组成、结构及性能进行调控.介绍了ZrO2纳米纤维制备、结构及性能方面的研究进展,并对经由原料组成、静电纺丝工艺及热处理条件调控的ZrO2纳米纤维结构、性能以及应用进行了综述和分析.","authors":[{"authorName":"杨清会","id":"ccd7a74f-2f13-4c31-b47d-c5b79ee232e3","originalAuthorName":"杨清会"},{"authorName":"周洁","id":"92736885-c81d-4f3b-9bbb-5d731c742dc6","originalAuthorName":"周洁洁"},{"authorName":"王晓婷","id":"6694ea8a-8ce5-4481-a2ff-7241437f1bd5","originalAuthorName":"王晓婷"},{"authorName":"孙陈诚","id":"5fbbbb81-bdb5-4ff8-969b-3d0866a9cf10","originalAuthorName":"孙陈诚"},{"authorName":"胡子君","id":"85367ad5-eae6-4c6f-9d4b-a2eb86bf49f4","originalAuthorName":"胡子君"},{"authorName":"洪樟连","id":"8c795c55-b743-4856-8341-bbc141fa97c3","originalAuthorName":"洪樟连"},{"authorName":"支明佳","id":"9bf4e95a-842e-477e-bc41-2bf3bbcd734a","originalAuthorName":"支明佳"}],"doi":"10.11896/j.issn.1005-023X.2015.03.002","fpage":"8","id":"789282f4-c923-453c-adda-5a18faf8a0ea","issue":"3","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"a6a615ee-15a1-463e-b52a-cce9d6fdc86f","keyword":"ZrO2","originalKeyword":"ZrO2"},{"id":"306e99d9-77f6-4c35-ae84-3b1b401cf1d6","keyword":"纳米纤维","originalKeyword":"纳米纤维"},{"id":"81c28a14-e64d-43cd-8549-038052527f0b","keyword":"静电纺丝","originalKeyword":"静电纺丝"}],"language":"zh","publisherId":"cldb201503002","title":"静电纺丝制备的ZrO2纳米纤维及其应用的研究进展","volume":"29","year":"2015"},{"abstractinfo":"Al_2O_3气凝胶以其独特性质受到人们的广泛关注.本文就Al_2O_3气凝胶的结构、性质和制备方法进行了综述,制备方法包括铝醇盐的一步法、两步法和无机铝盐的滴加环氧丙烷法,其中滴加环氧丙烷法是制备高性能Al_2O_3气凝胶非常有发展潜力的方法之一.同时还介绍了纤维增强气凝胶、多组分及掺杂改性气凝胶.","authors":[{"authorName":"胡子君","id":"a1554964-3e43-4aa8-adaa-f51f081cb2a5","originalAuthorName":"胡子君"},{"authorName":"周洁","id":"e91c726e-80ed-4b63-b7cf-11d4aa6db69b","originalAuthorName":"周洁洁"},{"authorName":"陈晓红","id":"13a29dea-e19a-4a1c-98d9-52c260b6154e","originalAuthorName":"陈晓红"},{"authorName":"孙陈诚","id":"d2969b25-3cc3-4ab3-9122-6cef9714140e","originalAuthorName":"孙陈诚"}],"doi":"","fpage":"1002","id":"0e4ca05b-479d-4878-8249-995beec3ae5b","issue":"5","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"e6d2ffb1-78d3-4202-82f7-2f4095a9d4b2","keyword":"氧化铝","originalKeyword":"氧化铝"},{"id":"cc3368b1-4121-4d4b-ba71-64cba61cc922","keyword":"气凝胶","originalKeyword":"气凝胶"},{"id":"c9096bda-8959-4c43-8f9a-39953a3b4770","keyword":"制备方法","originalKeyword":"制备方法"},{"id":"a87ef70b-c80d-40d5-835c-8449ac1c6d2b","keyword":"复合","originalKeyword":"复合"},{"id":"60c5cd4e-f354-456d-8bef-dcf86a163135","keyword":"掺杂","originalKeyword":"掺杂"}],"language":"zh","publisherId":"gsytb200905026","title":"氧化铝气凝胶的研究进展","volume":"28","year":"2009"},{"abstractinfo":"以AlCl_3·6H_2O为前驱体,无水乙醇和去离子水的混合溶液为溶剂,环氧丙烷为凝胶网络诱导荆,通过溶胶-凝胶技术制备得到溶胶,再经超临界干燥制备出块状氧化铝气凝胶.采用SEM、TEM、XRD、BET等手段,对氧化铝气凝胶在不同热处理温度下的微观结构进行了对比和分析.结果表明,氧化铝气凝胶的主要成分为多晶勃姆石相,微观结构由许多叶片状纤维堆积形成,经500和1 000℃热处理后成块性未受到明显的影响,比表面积各为429和174 m~2/g.在20~1000℃内,氧化铝气凝胶发生了由多晶态勃姆石相→γ-Al_2O_3→δ-Al_2O_3的相转变.","authors":[{"authorName":"周洁","id":"04973b8b-587e-43f2-83e3-496494aff170","originalAuthorName":"周洁洁"},{"authorName":"陈晓红","id":"0368d8dc-31ef-41aa-bce6-dbfbc82ec7be","originalAuthorName":"陈晓红"},{"authorName":"胡子君","id":"337d21ed-1f23-42c0-b49b-826c1b77d273","originalAuthorName":"胡子君"},{"authorName":"孙陈诚","id":"0172780a-d8bd-4340-8d92-a213ef501275","originalAuthorName":"孙陈诚"},{"authorName":"陈海坤","id":"85dab661-cde7-4741-8915-3c692cf8d80c","originalAuthorName":"陈海坤"},{"authorName":"宋怀河","id":"70227b4e-abdb-4a6c-ace0-1e02fc2fe3b6","originalAuthorName":"宋怀河"}],"doi":"10.3969/j.issn.1007-2330.2010.02.014","fpage":"51","id":"2b603b41-f819-493f-a540-dfefde10cee3","issue":"2","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"f8d37c41-0a02-4b5b-b14d-801cf385fd4e","keyword":"块状","originalKeyword":"块状"},{"id":"7f4d1a0c-5ccd-4524-a767-b999fe22886b","keyword":"氧化铝气凝胶","originalKeyword":"氧化铝气凝胶"},{"id":"d3325bc6-0ab1-4b67-9082-076552f6d54c","keyword":"比表面积","originalKeyword":"比表面积"},{"id":"04b0c7c2-ea8e-4e50-8d6b-c40b31fd599e","keyword":"热处理","originalKeyword":"热处理"}],"language":"zh","publisherId":"yhclgy201002014","title":"热处理对块状氧化铝气凝胶微观结构的影响","volume":"40","year":"2010"},{"abstractinfo":"以AlCl3·6H2O为原料,YCl3·6H2O为添加剂,采用溶胶-凝胶法和超临界干燥工艺制备得到氧化钇掺杂氧化铝块状气凝胶.其中掺杂含量控制在2.5wt%~30wt%Y2O3范围内.利用扫描电镜(SEM)、X射线衍射(XRD)、BET比表面积测定等测试手段对样品进行表征.结果表明:氧化钇的掺杂可以使氧化铝气凝胶在高温下维持高比表面积以及提高其在高温的热稳定性.经1000 ℃热处理后5.0wt%Y2O3-Al2O3气凝胶仍然处于无定形态,未发生相转变,比表面积仍达380~400 m2/g,比纯Al2O3气凝胶(174 m2/g)高出许多.","authors":[{"authorName":"周洁","id":"4aba8d45-403e-405b-a6d2-1f3c3f6b185b","originalAuthorName":"周洁洁"},{"authorName":"陈晓红","id":"38053dcf-2748-439d-a807-f6bdb1a9f112","originalAuthorName":"陈晓红"},{"authorName":"宋怀河","id":"cd108cf3-788e-444d-bd60-4411bfacb835","originalAuthorName":"宋怀河"},{"authorName":"胡子君","id":"ed9d6def-3e87-46dd-87e6-e074ee629f20","originalAuthorName":"胡子君"},{"authorName":"孙陈诚","id":"6058d5bd-796e-4abc-8276-11930d5ce8f9","originalAuthorName":"孙陈诚"},{"authorName":"姚先周","id":"05440ec8-0df2-45d0-ba4d-05bbaa533dcd","originalAuthorName":"姚先周"}],"doi":"","fpage":"1002","id":"2b6599da-66d8-47b5-9355-942f67614625","issue":"5","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"bc914bbf-3cc9-4203-8081-be92c5386609","keyword":"氧化铝气凝胶","originalKeyword":"氧化铝气凝胶"},{"id":"fa5a5ba2-3445-481a-ac15-a36ea04dbd3a","keyword":"掺杂","originalKeyword":"掺杂"},{"id":"daa165c9-5ecc-48a7-8f19-70a08cfc2f46","keyword":"热稳定性","originalKeyword":"热稳定性"},{"id":"1917c9e6-d677-4bf7-8b88-115a340eb1d5","keyword":"比表面积","originalKeyword":"比表面积"}],"language":"zh","publisherId":"gsytb201005003","title":"氧化钇掺杂对Al2O3块状气凝胶结构与性能的影响","volume":"29","year":"2010"},{"abstractinfo":"以超薄纳米隔热材料为间隔物、金属箔为反射层制备了多层反射纳米隔热材料,通过改变隔热材料的组合结构测试其隔热效果.结果表明:在研究范围内增加不锈钢箔层数、将不锈钢箔放置在低温区或在低温区用铝箔替代不锈钢箔都对隔热效果有利;测试温度高时隔热效果更好.","authors":[{"authorName":"孙陈诚","id":"23877917-f550-4f9e-9398-9ad628a7b225","originalAuthorName":"孙陈诚"},{"authorName":"胡子君","id":"e4b7e7bb-7122-4e8d-a94c-9af63e478da2","originalAuthorName":"胡子君"},{"authorName":"陈海坤","id":"8eec39c1-3590-4d14-b23d-b8f9c666e502","originalAuthorName":"陈海坤"},{"authorName":"王晓婷","id":"3abf696d-a382-4385-ac6b-d1af849b3af1","originalAuthorName":"王晓婷"},{"authorName":"周洁","id":"4ddfa0b0-8433-496f-a47b-ec062f63e23a","originalAuthorName":"周洁洁"}],"doi":"10.3969/j.issn.1007-2330.2011.06.010","fpage":"44","id":"2ba62a06-0a58-4dc1-9a75-8b5593cf9d31","issue":"6","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"3118591a-e1b0-45cf-8c3d-904d1fa3e863","keyword":"多层反射纳米隔热材料","originalKeyword":"多层反射纳米隔热材料"},{"id":"b7ab7bac-a19b-4fec-9904-93ee4e4d6383","keyword":"组合结构","originalKeyword":"组合结构"},{"id":"3098c140-43f6-4c6a-8fa6-15f3696d3a10","keyword":"隔热效果","originalKeyword":"隔热效果"}],"language":"zh","publisherId":"yhclgy201106010","title":"组合结构对多层反射纳米材料高温隔热性能的影响","volume":"41","year":"2011"},{"abstractinfo":"为满足未来新型飞行器对隔热材料的需求,将刚性隔热瓦在1 200℃热处理30 min,对其质量稳定性、尺寸稳定性、力学性能、隔热性能以及微观结构等进行了评价.结果表明,热处理20次的质量损失率、xy向线性收缩率、隔热性能以及微观结构变化都很小,仅z向线性收缩率稍大(3.19%).综合来看,1 200℃/30min的使用条件下,隔热瓦能够满足20次的重复使用要求.","authors":[{"authorName":"杨海龙","id":"b1ce61b2-172e-407f-94f4-54d5a125b41b","originalAuthorName":"杨海龙"},{"authorName":"周洁","id":"46716568-d198-4965-a5f4-30cd43877cfc","originalAuthorName":"周洁洁"},{"authorName":"姚先周","id":"5d5692d4-9875-4b96-84f4-5ab147586d77","originalAuthorName":"姚先周"},{"authorName":"宋兆旭","id":"1ce84643-195e-461f-9d78-0f42576be72d","originalAuthorName":"宋兆旭"},{"authorName":"胡子君","id":"15f09752-a294-4447-a27d-5fe94598976e","originalAuthorName":"胡子君"}],"doi":"10.3969/j.issn.1007-2330.2014.05.014","fpage":"61","id":"3885a36b-b344-4359-ac84-13e98bb5d562","issue":"5","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"27cc6e3b-bb51-4825-a43f-1cfd0750ed9c","keyword":"刚性隔热瓦","originalKeyword":"刚性隔热瓦"},{"id":"a0ec23de-d49e-4c05-a277-5a17be89d381","keyword":"重复使用性","originalKeyword":"重复使用性"},{"id":"309caefa-277e-45f8-8f81-2840424cc16d","keyword":"热处理","originalKeyword":"热处理"}],"language":"zh","publisherId":"yhclgy201405014","title":"刚性隔热瓦重复使用性评价研究","volume":"44","year":"2014"},{"abstractinfo":"以三种不同陶瓷纤维缝线缝制而得的柔性隔热材料为研究对象,比较了上述材料在300、600和900℃热处理30 min后拉伸强度的变化.通过对材料断裂模式的分析,提出纤维表面处理剂的挥发和非晶质纤维的晶型转变,是导致柔性隔热材料高温拉伸强度降低的主要原因.","authors":[{"authorName":"张宏波","id":"9b282b69-02b4-4f7f-964d-976fc6add4d1","originalAuthorName":"张宏波"},{"authorName":"陈海坤","id":"eb6294fe-f0fc-49a5-b639-98a7560eb696","originalAuthorName":"陈海坤"},{"authorName":"周洁","id":"4df5c567-4ff4-4432-8d15-b692c8e1cf3f","originalAuthorName":"周洁洁"},{"authorName":"孙陈诚","id":"371e5658-5af0-451c-a4be-968544a0f48a","originalAuthorName":"孙陈诚"},{"authorName":"王钦","id":"2a1d354f-5f0b-4dab-bf17-6d60052c0285","originalAuthorName":"王钦"}],"doi":"","fpage":"49","id":"6f8f0720-fdf1-4c1d-836c-7ebba007b51f","issue":"5","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"ed198aef-7519-4bd8-a03a-6c4a96d1013d","keyword":"柔性隔热材料","originalKeyword":"柔性隔热材料"},{"id":"429aa7fc-ffac-4fde-a738-88e16ba9d83b","keyword":"拉伸强度","originalKeyword":"拉伸强度"},{"id":"e45ae59a-d616-488b-9ea0-bb7adb662d60","keyword":"断裂模式","originalKeyword":"断裂模式"}],"language":"zh","publisherId":"yhclgy201305011","title":"柔性隔热材料拉伸断裂模式分析","volume":"43","year":"2013"},{"abstractinfo":"以陶瓷隔热瓦和纳米隔热材料为研究对象,揭示了高效隔热材料结构与性能的关系.研究结果表明:随着密度的增加,隔热材料室温热导率和力学性能随之增加;陶瓷隔热瓦平面方向和厚度方向的结构和性能存在明显差异;复合纳米结构后,材料的隔热性能明显提高;室温热导率从43 mW/(m·K)降低至36 mW/(m·K);添加少量功能添加物后,材料的高温隔热性能进一步提高,高温考核中背面温度从668℃降低到576℃.同时介电常数从2.2%增加到6.6%;通过气相超临界工艺在材料表面接枝有机基团,材料表面疏水状态发生显著变化,材料具备了防水和低吸潮的特性.","authors":[{"authorName":"陈海坤","id":"efc48dde-b692-4678-9ca0-56eb9be3cfde","originalAuthorName":"陈海坤"},{"authorName":"孙陈诚","id":"406b1c06-25aa-417f-a9ca-98cd1e7ff411","originalAuthorName":"孙陈诚"},{"authorName":"周洁","id":"9abe6992-e706-405e-bf04-57ceda1128c8","originalAuthorName":"周洁洁"},{"authorName":"王晓婷","id":"72d2f7d2-5c95-4744-a881-5343e4e773fc","originalAuthorName":"王晓婷"},{"authorName":"胡子君","id":"0c2575b2-f680-4c03-a37a-24916d50082d","originalAuthorName":"胡子君"}],"doi":"","fpage":"38","id":"a682a00d-1d5a-4c16-bdad-893ca3f2f744","issue":"2","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"81aa07dd-d7d1-4ef1-85c0-3bc963c884b1","keyword":"高效隔热材料","originalKeyword":"高效隔热材料"},{"id":"0013b98d-44d8-4252-8f85-f2c1f4f0dd9b","keyword":"结构与性能","originalKeyword":"结构与性能"}],"language":"zh","publisherId":"yhclgy201302009","title":"高效隔热材料结构与性能研究","volume":"43","year":"2013"},{"abstractinfo":"通过SEM等手段对以芳纶纤维为原料,采用针刺工艺制备的应变隔离垫的微观结构、力学、粘接和耐温性能进行表征与分析.结果表明:当针刺密度为35针/cm2、材料密度为0.18 g/cm3时,材料具有很好的应变协调能力和力学性能,经200℃以下温度热处理,材料无明显变化,强度仍可达0.9 MPa.在风洞考核环境下,陶瓷瓦热防护组件最高表面温度1 500℃,风洞考核后,组件无开裂、松动现象,验证了应变隔离垫用于陶瓷瓦粘接的可靠性.","authors":[{"authorName":"周洁","id":"539a0163-8d97-48df-97a6-edf2c2207ade","originalAuthorName":"周洁洁"},{"authorName":"孙陈诚","id":"2a630a43-0644-42c1-8f6f-19c79179ae83","originalAuthorName":"孙陈诚"},{"authorName":"陈育阳","id":"d78862d9-0566-4f95-9956-f8b13b0384fe","originalAuthorName":"陈育阳"},{"authorName":"徐云辉","id":"35196d4f-e464-41d3-9f9d-89f57e8e0645","originalAuthorName":"徐云辉"},{"authorName":"胡子君","id":"6ca51849-aff7-4026-a898-a6ee23770852","originalAuthorName":"胡子君"}],"doi":"10.12044/j.issn.1007-2330.2017.03.014","fpage":"61","id":"c9ea0772-07bf-470b-82d2-39bd9e3b9e0e","issue":"3","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"3ee95a13-af3e-43c7-bc14-c2bd3414f291","keyword":"应变隔离垫","originalKeyword":"应变隔离垫"},{"id":"05984529-6eaf-4e30-802b-7ec6c8cbe826","keyword":"芳纶纤维毡","originalKeyword":"芳纶纤维毡"},{"id":"ac724af2-0a1b-4777-93d6-0534b87ad8ca","keyword":"应变协调","originalKeyword":"应变协调"}],"language":"zh","publisherId":"yhclgy201703014","title":"陶瓷防热瓦用应变隔离垫的制备及性能","volume":"47","year":"2017"},{"abstractinfo":"以陶瓷纤维制成的高温隔热瓦为骨架,真空浸渍氧化铝溶胶,再经过凝胶、老化和超临界干燥制备出氧化铝气凝胶复合高温隔热瓦,研究了其在不同温度处理后(最高温度1 400℃)的微观结构、隔热和力学性能.结果表明:气凝胶复合高温隔热瓦在1 400℃保温30 min后线收缩率仅为2%;随着热处理温度升高,气凝胶颗粒发生熔并、长大,气凝胶从填充纤维空隙到不断收缩,但对纤维骨架没有明显影响;隔热瓦的室温、高温热导率均显著降低;在热面1 400的背温测试中,复合后材料的背温从945℃降到870℃;复合后隔热瓦的力学性能略有增加;但是1 200~1 400℃的压缩强度下降较大.可见,气凝胶复合高温隔热瓦可改善其隔热性能,但在高温下力学性能下降.","authors":[{"authorName":"孙晶晶","id":"3487cbeb-8a48-45b0-9b75-86bda823345a","originalAuthorName":"孙晶晶"},{"authorName":"胡子君","id":"793c2269-12d9-4ad9-8d7b-178d38bfaec1","originalAuthorName":"胡子君"},{"authorName":"吴文军","id":"5b6c39b8-b64d-423b-944b-3cfa9068bc37","originalAuthorName":"吴文军"},{"authorName":"周洁","id":"ce26e11e-b0c2-4d74-87c1-d44544a88788","originalAuthorName":"周洁洁"},{"authorName":"李俊宁","id":"55c5839e-d2f5-48fb-8b51-1a1137e5be0d","originalAuthorName":"李俊宁"}],"doi":"10.12044/j.issn.1007-2330.2017.03.008","fpage":"33","id":"52160d95-27de-481a-a304-8833b4717330","issue":"3","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"798fb5db-cadb-4dcd-96fe-92f2ec6a47dd","keyword":"气凝胶","originalKeyword":"气凝胶"},{"id":"cab737c3-416a-4682-9012-13daaaf7fdab","keyword":"隔热瓦","originalKeyword":"隔热瓦"},{"id":"1096de02-d64b-4fcb-846e-e945c6eff16b","keyword":"隔热性能","originalKeyword":"隔热性能"},{"id":"4012ceed-8094-4837-9117-d390480ef698","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"yhclgy201703008","title":"氧化铝气凝胶复合高温隔热瓦的制备及性能","volume":"47","year":"2017"}],"totalpage":6,"totalrecord":51}