{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"探索纳米羟基磷灰石(n-HA)与聚醚砜(PES)电纺的最佳比例,制备新型纳米材料,并探讨其骨细胞相容性.分别以n-HA/PES:20/80,15/85,10/90(质量分数,下同),PES22%为电纺的比例,用N,N-二甲基甲酰胺(DMF)作溶剂,通过气电纺的方法制备了纳米羟基磷灰石与聚醚砜的复合纳米材料,运用扫描电镜、X射线能谱分析等方法进行检测,并在制得的纳米材料上接种成骨细胞,发现当n-HA与PES比例为10/90时,纺丝效果较好,纤维分布均匀;接种成骨细胞后,与阴性对照组比较,细胞在增殖上具有优势.从而证明气电纺制备的n-HA/PES纳米材料具有良好的骨细胞相容性.","authors":[{"authorName":"魏娜","id":"a0cb7688-9128-47e2-8dd3-ffe73fcf758f","originalAuthorName":"魏娜"},{"authorName":"宫苹","id":"ac84aff5-42d1-4998-99d4-23efd23c80ed","originalAuthorName":"宫苹"},{"authorName":"林义","id":"cb205dfe-a7aa-4353-983f-c6b25eea9e60","originalAuthorName":"林义"},{"authorName":"王敏","id":"a9f31c6c-482d-4622-9abc-767afde13a2c","originalAuthorName":"王敏"},{"authorName":"姚永毅","id":"2e77efbb-f1b6-487e-836b-0bdb69f2e894","originalAuthorName":"姚永毅"},{"authorName":"李小玉","id":"3dcd3c4a-3dfe-4b61-8d4d-4597c60fb9cb","originalAuthorName":"李小玉"},{"authorName":"林映荷","id":"1dd002b1-31a5-4c18-b2da-a26a0a8785bd","originalAuthorName":"林映荷"},{"authorName":"吴大诚","id":"cfb9da29-f66a-432c-94bb-4c2904e5e452","originalAuthorName":"吴大诚"},{"authorName":"满毅","id":"50492262-59cf-441c-b341-cc1b70c1e2bc","originalAuthorName":"满毅"}],"doi":"","fpage":"34","id":"0ffb5d92-6247-4cfc-990b-3c875c87f44e","issue":"z2","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"cc216dd6-17a8-48bb-bf70-314e4150cc8c","keyword":"气流-静电纺丝","originalKeyword":"气流-静电纺丝"},{"id":"c0344be0-98f8-4fef-b726-fa0dd6965176","keyword":"纳米材料","originalKeyword":"纳米材料"},{"id":"00dce57b-c3b4-46b2-b2eb-3e30a6d53367","keyword":"羟基磷灰石","originalKeyword":"羟基磷灰石"},{"id":"145438a2-a637-472a-906d-3fc51150285c","keyword":"聚醚砜","originalKeyword":"聚醚砜"},{"id":"e9c655a6-75be-4351-b746-8f0cde149ea6","keyword":"生物相容性","originalKeyword":"生物相容性"}],"language":"zh","publisherId":"xyjsclygc2007z2010","title":"气电纺制备新型纳米材料及骨细胞相容性研究","volume":"36","year":"2007"},{"abstractinfo":"为研究铝-锂合金材料的亚光面、亚面对铬酸阳极氧化膜性能的影响,通过扫描电镜观察了基材的亚光面、亚面及阳极氧化膜的形貌,测试了亚光面、亚面的膜厚及与漆膜的结合力,利用电化学试验测试亚光面、亚面膜层的耐蚀性.结果表明:铝-锂合金材料亚光面和它的氧化膜均比亚面平整光滑,但两面的氧化膜厚度、与漆膜的结合力及耐蚀性接近.","authors":[{"authorName":"王云飞","id":"b02c9dab-c529-4504-bf3d-25c4b8face65","originalAuthorName":"王云飞"},{"authorName":"李旭勇","id":"d3af672e-83e7-4e5c-9c59-da7607b52885","originalAuthorName":"李旭勇"},{"authorName":"吴筱兰","id":"9adb6aac-5d5e-47c0-8554-7b20f6060080","originalAuthorName":"吴筱兰"},{"authorName":"魏娜","id":"d5a4b568-f708-44bf-8c85-35d3f444124e","originalAuthorName":"魏娜"},{"authorName":"刘诗超","id":"6efdae36-b341-4952-bc06-24b6079fb771","originalAuthorName":"刘诗超"}],"doi":"10.3969/j.issn.1001-3849.2014.06.011","fpage":"44","id":"27708dee-799a-465f-a74e-25fd2d243354","issue":"6","journal":{"abbrevTitle":"DDYJS","coverImgSrc":"journal/img/cover/DDYJS.jpg","id":"20","issnPpub":"1001-3849","publisherId":"DDYJS","title":"电镀与精饰 "},"keywords":[{"id":"e34c6e70-8f25-422f-bf5d-8ff381118d6a","keyword":"铝-锂合金","originalKeyword":"铝-锂合金"},{"id":"ab4371b6-da02-48bd-bc5b-567a53383b60","keyword":"阳极氧化","originalKeyword":"阳极氧化"},{"id":"39c6284f-f8a4-4aa6-bb2d-5fb701a70caf","keyword":"亚光面","originalKeyword":"亚光面"},{"id":"11dbcddd-52fd-4579-ad6c-09361f75b86e","keyword":"微观形貌","originalKeyword":"微观形貌"},{"id":"3c4bf986-d6eb-47ac-8473-8760634329fb","keyword":"结合力","originalKeyword":"结合力"},{"id":"3bf198d0-2f59-4006-9e57-b03b83e932cf","keyword":"耐蚀性","originalKeyword":"耐蚀性"}],"language":"zh","publisherId":"ddjs201506011","title":"铝-锂合金材料表面状态对阳极氧化膜性能的影响","volume":"37","year":"2015"},{"abstractinfo":"采用溶胶-微波水热法使TiO2前驱体微球表面形成自组装介孔结构,得到F掺杂的介孔TiO2微球.利用SEM、TEM、XRD、XPS、PL对样品进行表征,并对其生长机理进行简要的分析.结果表明,微球的直径约为400nm,由于NaF的加入,纳米晶粒(12±0.5)nm和介孔(约10nm)的形成使粗糙度明显增强;F的掺杂没有引起新的萤光现象,但F的掺杂能够增加TiO2微球PL光谱的强度.PL谱表明样品在396和464nm范围内有很强的蓝光发射特性,这与样品的微观结构有很大关系.","authors":[{"authorName":"朱振峰","id":"4266f1e3-14d5-4a5e-8b4d-1268d7844ca4","originalAuthorName":"朱振峰"},{"authorName":"何作利","id":"79b3396e-fe40-4551-9a70-76abc1854aa1","originalAuthorName":"何作利"},{"authorName":"李军奇","id":"13687783-0c26-43b9-8879-97032143b5e5","originalAuthorName":"李军奇"},{"authorName":"魏娜","id":"99c24f76-3081-47f1-9a9f-57488da6e9a0","originalAuthorName":"魏娜"},{"authorName":"郭丽英","id":"da7135cf-d0d8-41cc-892f-d0f5874233c5","originalAuthorName":"郭丽英"}],"doi":"","fpage":"1639","id":"469d9215-47a0-4736-b7b6-50114b4070e3","issue":"9","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"0eeb2431-46e4-45c3-a78a-3b36214a665f","keyword":"F-TiO2","originalKeyword":"F-TiO2"},{"id":"0a59ac7c-4ba1-444e-9f90-5b74af58856d","keyword":"介孔微球","originalKeyword":"介孔微球"},{"id":"bc759894-c332-457f-88da-c9d8a0286c54","keyword":"自组装结构","originalKeyword":"自组装结构"},{"id":"03d33c28-0474-43a3-82ca-ad70a5f3f102","keyword":"溶胶-微波水热","originalKeyword":"溶胶-微波水热"},{"id":"cc5f4eda-c5fa-48e6-ab81-1f59f92ba3ad","keyword":"光致发光(PL)","originalKeyword":"光致发光(PL)"},{"id":"b552a673-438f-4ede-94c0-ac8a9ae199b1","keyword":"生长机理","originalKeyword":"生长机理"}],"language":"zh","publisherId":"gncl201009040","title":"F-TiO2组装微球的溶胶-微波水热合成及生长机理","volume":"41","year":"2010"},{"abstractinfo":"研究了1 173 K高温改性处理对沥青基活性炭纤维吸附性能、孔径分布、微孔结构和表面化学的影响.低温(77 K)N2吸附结果表明热处理后活性炭纤维比表面积略有下降,通过密度函数理论解析活性炭纤维全孔范围的孔分布得出活性炭纤维表面孔径大于1.0 nm的微孔明显减少,微孔孔径更加集中于0.5 nm~1.0 nm,从而提高了活性炭纤维的碘吸附值.X射线衍射分析表明活性炭纤维是乱层石墨结构,热处理使活性炭纤维类石墨微晶碳层面的层间距下降,X光电子能谱分析表明热处理后活性炭纤维表面的含氧官能团C=O和COOH的含量变化不大,而呈碱性酚羟基C-OH含量的明显下降使活性炭纤维表面碱性降低.","authors":[{"authorName":"乔志军","id":"8946fdc2-05a1-4fc1-b2da-e95db2429621","originalAuthorName":"乔志军"},{"authorName":"李家俊","id":"a0c511bb-6fe7-4ab6-bc68-46ae4a64a802","originalAuthorName":"李家俊"},{"authorName":"赵乃勤","id":"fcadd3c3-b2e2-4620-aa1d-5eca42042a38","originalAuthorName":"赵乃勤"},{"authorName":"魏娜","id":"f0e9eacf-8b07-4361-9024-cfb29765471d","originalAuthorName":"魏娜"}],"doi":"10.3969/j.issn.1007-8827.2004.01.011","fpage":"53","id":"522e9897-315b-4230-9814-d4d190dd0f12","issue":"1","journal":{"abbrevTitle":"XXTCL","coverImgSrc":"journal/img/cover/XXTCL.jpg","id":"70","issnPpub":"1007-8827","publisherId":"XXTCL","title":"新型炭材料"},"keywords":[{"id":"9d1751ed-8065-4d62-af43-a8fb37774e65","keyword":"活性炭纤维","originalKeyword":"活性炭纤维"},{"id":"53be8382-ca5f-416f-8714-b23c6d0668e9","keyword":"热处理","originalKeyword":"热处理"},{"id":"c44d8cf8-df88-4748-a88b-9bce89958f2f","keyword":"微孔结构","originalKeyword":"微孔结构"},{"id":"f30ef7e3-eb17-4f19-b84a-d20957ff0863","keyword":"吸附性能","originalKeyword":"吸附性能"}],"language":"zh","publisherId":"xxtcl200401011","title":"高温热处理对活性炭纤维微孔及表面性能的影响","volume":"19","year":"2004"},{"abstractinfo":"以Ni粉和Al粉为原料,通过热爆反应合成及空冷制备Ni-Al系金属间化合物.利用X射线衍射仪、电子探针和显微硬度计分析了合成试样的物相组成、显微组织及硬度.结果表明:当Ni、Al摩尔比为1∶1时,反应生成物为单一的枝晶状NiAl相;当Ni、Al摩尔比为3∶1时,生成物组织形态复杂,主要由枝晶状β-NiAl、粗大块状和网状γ-Ni3Al、不规则的块状或者短棒状γ'-Ni3Al、板条状和针片状M-NiAl组成.因为γ'-Ni3Al在β-NiAl晶粒内部析出造成的应力场、NiAl中富含大量Ni及非平衡冷却,有利于β-NiAl转变成M-NiAl.","authors":[{"authorName":"崔洪芝","id":"d0c593ac-f331-4bab-ad07-64e0517e7a0c","originalAuthorName":"崔洪芝"},{"authorName":"魏娜","id":"894986b9-d5ff-402e-862c-950eff6ecf19","originalAuthorName":"魏娜"},{"authorName":"赫庆坤","id":"5f63cd49-412d-4d6f-aeed-1ad37acc6993","originalAuthorName":"赫庆坤"},{"authorName":"白斌","id":"7fd157e7-bd4d-417c-8de7-e50fcb523962","originalAuthorName":"白斌"}],"doi":"","fpage":"1","id":"79a4b9aa-f71f-4edc-8732-a243f12e3c7d","issue":"7","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"f9ebdbd2-bc40-4a6f-a53f-45524b125a2f","keyword":"NiAl","originalKeyword":"NiAl"},{"id":"24810134-b1f3-472a-83f0-1419962952cb","keyword":"Ni3Al","originalKeyword":"Ni3Al"},{"id":"74052994-c2c3-4d16-848d-cb06ba00f4e0","keyword":"热爆合成","originalKeyword":"热爆合成"},{"id":"b57a6d5b-9569-4db9-8b55-e44648c13021","keyword":"物相组成","originalKeyword":"物相组成"},{"id":"e5023779-6ac4-4d6b-940d-6105010553da","keyword":"组织结构","originalKeyword":"组织结构"}],"language":"zh","publisherId":"jsrclxb201307001","title":"热爆合成Ni-Al金属间化合物的物相及组织结构","volume":"34","year":"2013"},{"abstractinfo":"采用能谱分析、扫描电镜和中性盐雾试验等方法,研究脱氧处理对铝-锂合金铬酸阳极氧化膜性能的影响.结果显示,脱氧处理可清除铝-锂合金表面的氧化物,有利于阳极氧化膜的生长,并能增强阳极氧化膜与基材的结合力,提高氧化膜的耐蚀性.","authors":[{"authorName":"王云飞","id":"125c227c-2400-4ede-8acc-526d4702eed6","originalAuthorName":"王云飞"},{"authorName":"王春霞","id":"85e3b2c7-a7ab-4be7-a8d3-afaf39b6d982","originalAuthorName":"王春霞"},{"authorName":"李旭勇","id":"4bbe888f-4cdc-40a8-b2c8-1263030d7eea","originalAuthorName":"李旭勇"},{"authorName":"吴筱兰","id":"836e79cc-fba8-4d0d-a2ce-347255f24dee","originalAuthorName":"吴筱兰"},{"authorName":"魏娜","id":"10ea7e52-b4b3-481e-9bd9-0c869d696e27","originalAuthorName":"魏娜"},{"authorName":"刘诗超","id":"4b45ff7e-d357-4d1d-bae5-d5fc97842ed1","originalAuthorName":"刘诗超"}],"doi":"10.3969/j.issn.1001-3849.2015.07.011","fpage":"44","id":"bd7d6889-9262-4e56-83a9-e4d9f4999a71","issue":"7","journal":{"abbrevTitle":"DDYJS","coverImgSrc":"journal/img/cover/DDYJS.jpg","id":"20","issnPpub":"1001-3849","publisherId":"DDYJS","title":"电镀与精饰 "},"keywords":[{"id":"f5a49459-0b39-4d38-8563-9178b6cbe028","keyword":"脱氧","originalKeyword":"脱氧"},{"id":"af6af930-fe1a-43bd-94ad-e4a5f557774c","keyword":"阳极氧化膜","originalKeyword":"阳极氧化膜"},{"id":"18fef9ed-3563-4b76-864c-41d261ba3284","keyword":"耐蚀性","originalKeyword":"耐蚀性"},{"id":"974dec3b-92ca-4ffc-8d81-9c6f99d664e9","keyword":"铝-锂合金","originalKeyword":"铝-锂合金"}],"language":"zh","publisherId":"ddjs201507012","title":"脱氧对铝-锂合金铬酸阳极氧化膜性能的影响","volume":"37","year":"2015"},{"abstractinfo":"以Ti、Fe、B4C为初始粉末,采用等离子熔覆的方法,在Q235低碳钢表面获得了Fe基TiB2长条、TiC颗粒等多尺度强化相的陶瓷涂层,并分析了涂层的物相组成、组织结构、显微硬度,探讨了物相、组织结构的形成过程.结果表明,涂层主要物相为TiB2、TiC、Fe2B、Fe3(C,B)和α-Fe,其中TiB2主要为长条状,长度为60 ~ 74 μm,少部分呈近六边形块状,尺寸为4~5μm,而TiC主要是不规则的多边形细小颗粒,尺寸2~3 μm,均匀地分散在涂层中,还有部分TiC呈枝晶状;涂层与基体之间存在过渡层,涂层与基体之间结合紧密,呈冶金结合;随着等离子束电流的增加,长条状的TiB2数量减少而近六边形的块状TiB2数量增加,TiC枝晶生长更加充分.因TiB2长条和细小的TiC颗粒共存,对涂层起到多尺度复合强化作用.","authors":[{"authorName":"王珂","id":"3529fd99-d2f5-4262-997c-4541f615584e","originalAuthorName":"王珂"},{"authorName":"崔洪芝","id":"6d5309bc-f6b2-4609-8594-a8c8712cabd4","originalAuthorName":"崔洪芝"},{"authorName":"魏娜","id":"89f2a0a1-bd01-4c96-a248-7fae2ef9fe9c","originalAuthorName":"魏娜"},{"authorName":"张艳凤","id":"7b653193-e39e-4856-ad74-69bc0dce6e73","originalAuthorName":"张艳凤"},{"authorName":"王淑峰","id":"3263ca55-5ccd-4d34-902b-73f8361516b5","originalAuthorName":"王淑峰"},{"authorName":"程贵勤","id":"30a32f73-4659-4589-a6c4-2548eb032a96","originalAuthorName":"程贵勤"}],"doi":"","fpage":"174","id":"d0eef9b6-0e58-4cc5-98ea-9dea670b1204","issue":"6","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"9f954d66-12da-4d07-a402-d5afe0efea36","keyword":"等离子熔覆","originalKeyword":"等离子熔覆"},{"id":"e03dc787-00a3-41b7-b65a-c65f424354ef","keyword":"TiB2+TiC","originalKeyword":"TiB2+TiC"},{"id":"24b3d805-788c-462e-b984-10046db3faae","keyword":"多尺度增强","originalKeyword":"多尺度增强"},{"id":"f196c465-7937-4b6e-8e34-42869fcdbf06","keyword":"复合涂层","originalKeyword":"复合涂层"}],"language":"zh","publisherId":"jsrclxb201506033","title":"等离子熔覆TiB2长条+TiC颗粒多尺度复合强化陶瓷涂层","volume":"36","year":"2015"},{"abstractinfo":"以六水合硝酸镍为镍源,尿素为水解控制剂及聚乙二醇(PEG)为表面活性剂,采用微波水热法成功合成了由亚微米片自组装而成的花状结构Ni(OH)2,并通过进一步的热处理得到相同结构形貌的NiO.利用XRD、SEM、TEM、FTIR、UV-Vis等方法对产物进行了表征,结果表明,自组装花状结构Ni(0H)2的直径为2.5-4.Oμm,单个亚微米片的厚度约10-20nm,宽约在0.5-1.51μm之间.紫外吸收光谱分析表明,NiO样品的禁带宽度(Eg)值为3.27eV,有明显红移现象.将所制备的氢氧化镍制成电极,其电化学性能测试表明它具有良好的可逆性.","authors":[{"authorName":"朱振峰","id":"a3d49c79-570a-4d00-8414-460d9473786f","originalAuthorName":"朱振峰"},{"authorName":"魏娜","id":"4d927d23-3f2a-49d5-8bf5-8243b45fe8d8","originalAuthorName":"魏娜"},{"authorName":"刘辉","id":"ab2d0673-5171-4e4e-a218-40be7e5c818b","originalAuthorName":"刘辉"},{"authorName":"何作利","id":"9108d48e-a79b-4d90-b970-590deb3cd496","originalAuthorName":"何作利"},{"authorName":"杨冬","id":"d3703d1d-ff2a-478b-98bb-22ea90e59312","originalAuthorName":"杨冬"}],"doi":"","fpage":"436","id":"ee787cf2-4b74-46bb-8e6b-0ea51eb59e25","issue":"3","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"d2fb9fe7-b839-41d7-b228-d9f13496b6cb","keyword":"氢氧化镍","originalKeyword":"氢氧化镍"},{"id":"33a93234-3913-4520-9f70-337013f516d2","keyword":"氧化镍","originalKeyword":"氧化镍"},{"id":"7aaff52e-a079-4119-8108-54ce987661f5","keyword":"微波水热","originalKeyword":"微波水热"}],"language":"zh","publisherId":"gncl201103015","title":"自组装花状结构Ni(OH)2的微波水热合成与表征","volume":"42","year":"2011"},{"abstractinfo":"以除尘灰分离炭粉为原料,采用化学物理活化法制得活性炭.研究了铵盐浸渍预处理对活性炭特性的影响,讨论了比表面积对活性炭吸附性能的影响.结果表明,铵盐浸渍可以明显提高活性炭的比表面积,当浸渍比为2:1时,用除尘灰制得活性炭的比表面积最大值达1191.8m2/g,且其合适的孔结构可以提高对二甲苯的吸附能力.对铵盐浸渍预处理的活化机理作了初步探讨.","authors":[{"authorName":"赵乃勤","id":"27f8a5cc-4cb0-4ffb-89f0-5da80b422a97","originalAuthorName":"赵乃勤"},{"authorName":"魏娜","id":"c9a6cad4-674c-49ee-b072-5330a6e5114d","originalAuthorName":"魏娜"},{"authorName":"郭新权","id":"d1777112-0b58-4d03-8535-810e7e20fbc4","originalAuthorName":"郭新权"},{"authorName":"李家俊","id":"fe89112c-c68f-4ebb-81f9-a87d563f5677","originalAuthorName":"李家俊"}],"doi":"10.3969/j.issn.1009-6264.2004.02.017","fpage":"60","id":"f022c1db-be21-4d55-8cf1-3b4942d2808e","issue":"2","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"aec581b6-8ada-4ddc-bafe-cee72c4842cc","keyword":"活性炭(AC)","originalKeyword":"活性炭(AC)"},{"id":"a128c37f-6e98-43d8-a1e8-323fab50adbb","keyword":"化学物理活化","originalKeyword":"化学物理活化"},{"id":"27179ae8-a816-4231-b5b1-991c6ed662e0","keyword":"吸附","originalKeyword":"吸附"},{"id":"9af1b677-d318-4545-a824-af909a026329","keyword":"活化机理","originalKeyword":"活化机理"}],"language":"zh","publisherId":"jsrclxb200402017","title":"铵盐浸渍预处理对活性炭性能的影响","volume":"25","year":"2004"},{"abstractinfo":"以Zn(NO3)2·6H2O、NaOH和聚乙二醇(PEG,Mn=2000)为原料,采用微波水热法制备了结晶性能良好的ZnO纳米棒及其3D组装结构.利用EDS、XPS、SEM、TEM、FTIR对样品进行了表征,结合光致发光(PL)谱研究了样品的PL性能,并对ZnO纳米棒及其3D组装结构的生长机理进行了简要分析.结果表明,ZnO纳米棒的直径约为300nm,长径比约为3,3D组装结构的直径约为2μm,ZnO纳米棒及其3D组装结构的生长可能与PEG模板的导向作用有关.PL谱表明样品在413~464nm内有很强的蓝光发射特性,这与样品的微观结构有很大关系.","authors":[{"authorName":"朱振峰","id":"6611cf00-9e59-41b2-970b-ab9bc515f791","originalAuthorName":"朱振峰"},{"authorName":"杨冬","id":"12d34091-a892-4111-979e-a0a780a21898","originalAuthorName":"杨冬"},{"authorName":"魏娜","id":"5280e01c-6e2e-4267-8d6c-fc81131a1875","originalAuthorName":"魏娜"},{"authorName":"何作利","id":"2f930c7b-cd17-4775-9649-3cd0d9a4190b","originalAuthorName":"何作利"},{"authorName":"刘辉","id":"8b5caf9a-d3d1-4e59-9326-2bae4a1b30df","originalAuthorName":"刘辉"}],"doi":"","fpage":"30","id":"fefc6bd1-7100-4dab-86c5-330882ead864","issue":"6","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"e3fa5b50-35ce-4faf-81c6-f37a6ecc1ca7","keyword":"微波水热","originalKeyword":"微波水热"},{"id":"bfe1529a-5fa1-49de-80dd-aabb41fe919a","keyword":"ZnO","originalKeyword":"ZnO"},{"id":"38658ce2-49a9-4d2b-91ed-effc7f1ea08a","keyword":"自组装","originalKeyword":"自组装"},{"id":"841c3374-aa0e-44ed-b8d3-79435e1d3275","keyword":"光致发光(PL)","originalKeyword":"光致发光(PL)"}],"language":"zh","publisherId":"cldb201106009","title":"ZnO纳米棒及其3D组装结构的微波水热合成与表征","volume":"25","year":"2011"}],"totalpage":20,"totalrecord":191}