{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用溶剂热法制备出具有尺寸可调、分散性好和强磁性的纳米γ-Fe2O3颗粒.分别采用XRD、XPS、FESEM、TEM和超导量子干涉仪(SQUID)对其结构、组分、形貌和磁性进行表征,研究氯化铁的浓度,不同的表面活性剂和反应温度对磁性纳米颗粒结构形貌和直径的影响.结果表明:制备得到的产物为反尖晶石结构、具有单分散性的γ-Fe2O3纳米颗粒,粒径在50~400 nm之间可调.反应温度对纳米颗粒的相组成和形貌影响比较显著,在140℃下得到α-Fe2O3相,在160℃下得到γ-Fe2O3相,而在180与200℃下得到Fe3O4相.纳米颗粒尺寸随着氯化铁浓度的增加而增大,随着十二烷基苯磺酸钠(SDBS)的加入而减小.在室温下,γ-Fe2O3纳米颗粒具有较强磁性,当粒径为50 nm时其矫顽力可以达到1.4 kA/m.这将在磁性复合光催化剂和生物医学领域具有潜在的应用价值.","authors":[{"authorName":"王颖赛","id":"87e64408-85f2-4ed7-b4f9-afd424dd6065","originalAuthorName":"王颖赛"},{"authorName":"崔斌","id":"4b834de4-05b8-4b62-82e8-67587e9b7277","originalAuthorName":"崔斌"},{"authorName":"彭红霞","id":"ef3afeea-9e6f-46fc-9a7f-310fd8fae8df","originalAuthorName":"彭红霞"},{"authorName":"夏海青","id":"1e404f09-01a2-42b8-bbb5-93372d7100c7","originalAuthorName":"夏海青"},{"authorName":"畅柱国","id":"512eae77-2bfd-4e9b-8bc7-4937e6405dba","originalAuthorName":"畅柱国"}],"doi":"","fpage":"1187","id":"ba80220b-453a-46a4-85ed-0cc1121bb77d","issue":"5","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"9ddf92e5-515d-48e2-93df-5c80ca062233","keyword":"γ-Fe2O3纳米颗粒","originalKeyword":"γ-Fe2O3纳米颗粒"},{"id":"4d9a8cb6-7d50-4ac1-8b55-e144fd0cf806","keyword":"溶剂热法","originalKeyword":"溶剂热法"},{"id":"4be8b575-0793-443d-a813-09b329b27133","keyword":"磁性能","originalKeyword":"磁性能"}],"language":"zh","publisherId":"xyjsclygc201405033","title":"单分散粒径可控γ-Fe2O3纳米颗粒的制备及表征","volume":"43","year":"2014"},{"abstractinfo":"以FeCl3,C2H2O4,NaOH为原料,采用水热法200℃反应12h制备得到了α-Fe2O3纳米晶自组装的球形颗粒.利用X射线衍射仪、扫描电镜和透射电镜对所得产物进行了表征分析,并在室温下测量了其磁学性能.结果表明,所制备的α-Fe2O3纳米晶自组装的球形颗粒为三方晶系的单晶结构,其平均尺寸为300 nm.在室温下测试了球形颗粒的磁学特性,其矫顽力和剩余磁化强度分别为1543.34 Oe和0.10 emu/g,并根据α-Fe2O3纳米晶的形成与组装过程中的作用,并提出了可能生长机理.","authors":[{"authorName":"焦华","id":"f58aaecc-21fc-4a28-95d9-b483c6e63899","originalAuthorName":"焦华"},{"authorName":"王君龙","id":"e32c86c9-8fe8-43b0-8dc1-ff8130d71abb","originalAuthorName":"王君龙"}],"doi":"","fpage":"27","id":"a4d068de-1456-4560-bc19-c405cafc4e73","issue":"4","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"e1227d2d-d3ba-45a8-8b3a-053f3d54ee5d","keyword":"水热法","originalKeyword":"水热法"},{"id":"2e72063b-6146-41d8-b615-aac76ba54d7f","keyword":"α-Fe2O3球形颗粒","originalKeyword":"α-Fe2O3球形颗粒"},{"id":"3a14ef1c-5f73-40f7-9a58-da2db71737ef","keyword":"磁学性能","originalKeyword":"磁学性能"}],"language":"zh","publisherId":"jsrclxb201304006","title":"Fe2O3纳米晶自组装球形颗粒的制备与性能","volume":"34","year":"2013"},{"abstractinfo":"利用化学合成法在非水体系中制备了硬脂酸表面修饰的油溶性γ-Fe2O3纳米颗粒;用透射电子显微镜、X射线衍射仪、X射线光电子能谱仪和红外光谱仪表征了合成产物的形貌、结构和组成;用四球摩擦磨损试验机评价了油溶性γ-Fe2O3纳米颗粒作为润滑油添加剂对液体石蜡减摩抗磨作用的影响.结果表明,所制备的纳米颗粒是由无机γ-Fe2O3纳米核及化学吸附其表面的硬脂酸单分子层组成,无机纳米核平均粒径为4nm;其作为润滑油添加剂在适宜浓度范围内可以明显增强液体石蜡的减摩抗磨能力.","authors":[{"authorName":"马剑奇","id":"a191f9f9-9136-477e-a965-6eb430ffd159","originalAuthorName":"马剑奇"},{"authorName":"王晓波","id":"dc08971d-b795-41ee-870c-3b2d4b5a13da","originalAuthorName":"王晓波"},{"authorName":"崔若梅","id":"b5a0888f-a798-42ce-b640-228b90e81e2a","originalAuthorName":"崔若梅"},{"authorName":"刘维民","id":"79bf5dff-fc4e-4d12-8555-a825cfae8456","originalAuthorName":"刘维民"}],"doi":"10.3969/j.issn.1673-2812.2004.04.035","fpage":"607","id":"7b9d286e-77df-4961-8f97-2012f3b2d0bd","issue":"4","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"1d817529-4fc5-4569-8e11-ca719e5efdcd","keyword":"表面修饰","originalKeyword":"表面修饰"},{"id":"4a055191-7975-4a67-a1db-8b25f2ba12a4","keyword":"纳米颗粒","originalKeyword":"纳米颗粒"},{"id":"e6cbf075-c39e-46b7-961b-d8d747ea8613","keyword":"润滑油添加剂","originalKeyword":"润滑油添加剂"},{"id":"02a1af41-c2aa-4313-80c0-488e9ce003d4","keyword":"摩擦学性能","originalKeyword":"摩擦学性能"}],"language":"zh","publisherId":"clkxygc200404035","title":"表面修饰γ-Fe2O3纳米颗粒的制备、表征及摩擦学性能","volume":"22","year":"2004"},{"abstractinfo":"设计了一种简单的水热合成法合成晶型可控的立方结构的a-Fe2O3,通过扫描电子显微镜,透射电子显微镜,和X射线衍射对所制备产物的结构和形态特征进行了分析.制备的立方结构的α-Fe2O3的尺寸范围在130~150 nm之间.研究结果表明,a-Fe2O3纳米材料作为一种有效的光催化剂,在过氧化氢存在的条件下可以用来光催化降解废水中的有机物(如罗丹明B),这为设计和开发高效率可见光催化剂在去除工业废水中有机染料的应用提供了新的探索和基础.","authors":[{"authorName":"果海英","id":"5e86ec84-74a2-4553-9a46-2abd740323fc","originalAuthorName":"果海英"},{"authorName":"焦体峰","id":"e76e9595-48f5-4627-b4ce-87be68363cf0","originalAuthorName":"焦体峰"},{"authorName":"张庆瑞","id":"96b5162c-e68f-4fd1-b93d-19d88134e1bb","originalAuthorName":"张庆瑞"},{"authorName":"李阿丹","id":"620f3b9e-3eb6-4f95-9d9a-cc354a55e882","originalAuthorName":"李阿丹"},{"authorName":"高发明","id":"ee0fef89-5884-4af5-973f-b27d6c74c48b","originalAuthorName":"高发明"}],"doi":"","fpage":"2688","id":"5cd2882d-27d4-4edc-b79d-67009f3d75a5","issue":"11","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"1425e3ff-ce93-4a69-9253-0f8418530d92","keyword":"水热反应","originalKeyword":"水热反应"},{"id":"8c4411ca-3956-46ae-8bc1-b90cea96c6b8","keyword":"纳米颗粒","originalKeyword":"纳米颗粒"},{"id":"1831c001-c63f-4e6e-9c73-4f8b1886195d","keyword":"降解","originalKeyword":"降解"},{"id":"fe91455d-ec29-48a1-887d-2f62dccebcaf","keyword":"光催化剂","originalKeyword":"光催化剂"}],"language":"zh","publisherId":"xyjsclygc201511018","title":"立方α-Fe2O3纳米颗粒的制备、表征和光催化性能","volume":"44","year":"2015"},{"abstractinfo":"通过在TC11合金摩擦界面添加机械混合的多层石墨烯和Fe2O3纳米颗粒,研究其对TC11合金磨损行为的影响,并与未添加及只添加多层石墨烯或Fe2O3纳米颗粒时进行对比.利用XRD、SEM和EDS等微观分析手段对磨损表面的物相、形貌和成分进行检测分析,并探讨摩擦层的形成过程及纳米材料的作用.结果表明:添加多层石墨烯或Fe2O3纳米颗粒时形成的摩擦层不能稳定存在,无法改善TC11合金较差的耐磨性.而添加机械混合的多层石墨烯和Fe2O3纳米颗粒时,在磨面形成同时具有良好润滑性和优异承载能力的双层摩擦层,能有效地阻止金属间相互接触,对基体起到保护作用,使得TC11合金的磨损量显著下降.","authors":[{"authorName":"温国红","id":"cde64688-1b68-4dd7-9e71-c7bd2ca0ca92","originalAuthorName":"温国红"},{"authorName":"周银","id":"f6d6a517-d143-4946-b9a8-b476a798e509","originalAuthorName":"周银"},{"authorName":"黄柯植","id":"a2350111-48d8-4025-95c4-d919997e28be","originalAuthorName":"黄柯植"},{"authorName":"张波","id":"cc6ef01c-625f-42dc-84dc-28557adc8a89","originalAuthorName":"张波"},{"authorName":"曹臻","id":"8eb568cc-8589-4f52-832e-adce8373ff4f","originalAuthorName":"曹臻"},{"authorName":"王树奇","id":"8a788f23-e086-4957-897f-ee4220efa6e5","originalAuthorName":"王树奇"}],"doi":"10.7513/j.issn.1004-7638.2017.02.011","fpage":"64","id":"9800ff66-848b-4989-9a21-60bb8bbaea92","issue":"2","journal":{"abbrevTitle":"GTFT","coverImgSrc":"journal/img/cover/gtft1.jpg","id":"28","issnPpub":"1004-7638","publisherId":"GTFT","title":"钢铁钒钛"},"keywords":[{"id":"6d995c41-72a9-42b2-8600-f99c1eca348e","keyword":"TC11合金","originalKeyword":"TC11合金"},{"id":"cd1b5514-bf39-40a7-b488-a99e42195ec8","keyword":"多层石墨烯","originalKeyword":"多层石墨烯"},{"id":"22759528-daa3-4152-a81b-e852a8cb198e","keyword":"Fe2O3纳米颗粒","originalKeyword":"Fe2O3纳米颗粒"},{"id":"f1209e60-0538-46fd-a23b-f31492b30c89","keyword":"机械混合","originalKeyword":"机械混合"},{"id":"0d1c11e0-4ed1-4b40-8bb5-e48e678cd1a0","keyword":"摩擦层","originalKeyword":"摩擦层"}],"language":"zh","publisherId":"gtft201702011","title":"多层石墨烯和Fe2O3纳米颗粒对TC11合金磨损行为的影响","volume":"38","year":"2017"},{"abstractinfo":"利用MM-200型摩擦磨损试验机,较系统地考察了纳米Fe2O3填充的UHMWPE基复合材料的摩擦学性能,并与微米Fe2O3填充的复合材料作了对比研究.结果显示纳米Fe2O3粉体增强UHMWPE复合材料比微米Fe2O3粉体增强UHMWPE具有更好的减磨和抗磨性,文中对纳米和微米Fe2O3颗粒增强UHMWPE的磨损机理进行了分析.","authors":[{"authorName":"康学勤","id":"cd6eb5a0-330f-446d-869b-6b34850276e5","originalAuthorName":"康学勤"},{"authorName":"孙智","id":"42468180-67f5-4faf-b616-4b1fef0f74ed","originalAuthorName":"孙智"},{"authorName":"杨春敏","id":"c616aaba-f42d-495f-b9e9-92709fbf97cb","originalAuthorName":"杨春敏"},{"authorName":"张绪平","id":"067dc0fa-bf98-4282-8a18-c1a37fc6525a","originalAuthorName":"张绪平"}],"doi":"10.3969/j.issn.1003-1545.2004.02.002","fpage":"4","id":"c0c9252c-a5af-4f58-a63f-2f69f8acca09","issue":"2","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"27b31bb7-4891-4ec3-ae3a-24c4e77da184","keyword":"纳米Fe2O3","originalKeyword":"纳米Fe2O3"},{"id":"7a56399f-1068-4bef-99ab-8a8ff15ad620","keyword":"UHMWPE","originalKeyword":"UHMWPE"},{"id":"84407889-2b8b-49a0-93f2-370afad7f840","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"49c3d75b-4705-4c76-9321-2d5b45d74279","keyword":"磨损","originalKeyword":"磨损"}],"language":"zh","publisherId":"clkfyyy200402002","title":"纳米和微米Fe2O3颗粒填充UHMWPE基复合材料的摩擦学性能研究","volume":"19","year":"2004"},{"abstractinfo":"采用水热反应中的金属离子络合一步制备均匀超细磁性γ-Fe2O3纳米颗粒@多层石墨烯复合材料,无需对石墨烯进行氧化处理.采用超声法制备多层石墨烯作为基片,制备方法简单,石墨烯表面的含氧官能团少.以FeCl2为反应物,以DMF(N,N二甲基甲酰胺)和水混合液作为溶剂,其中DMF能起到络合金属离子的作用.实验研究了乙酸钠、反应温度及填充度对制备产物的影响.采用X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)对复合材料进行微结构分析,采用振动样品磁强计(VSM)测试了复合材料的磁性能.研究结果表明:利用亚铁离子与DMF形成的络合物与碳环的π-π吸附作用可以在多层石墨烯表面生成铁氧化物.通过控制亚铁离子的氧化速度和氧化铁的生长速度,在多层石墨烯表面获得了尺寸小于10nm的均匀γ-Fe2O3纳米颗粒,复合材料具有良好的磁性能.","authors":[{"authorName":"邱小贞","id":"a877546e-c930-4153-911b-55e9791f0b3f","originalAuthorName":"邱小贞"},{"authorName":"徐军明","id":"f974f7da-aa19-4e5b-ade3-01ad6def3359","originalAuthorName":"徐军明"},{"authorName":"徐桢","id":"ce7d5351-d53e-43ec-8101-162efbe83488","originalAuthorName":"徐桢"},{"authorName":"宋开新","id":"fb44391e-d981-4a90-a794-6f5e48d0543c","originalAuthorName":"宋开新"},{"authorName":"武军","id":"541ae37a-0b29-4dfb-a826-cc3c505a44ff","originalAuthorName":"武军"},{"authorName":"应智花","id":"84e63ad1-ba36-43ee-b798-03b4fc616575","originalAuthorName":"应智花"},{"authorName":"胡炜薇","id":"208673eb-380c-4485-9a71-9e9c0ce362fc","originalAuthorName":"胡炜薇"}],"doi":"10.15541/jim20150638","fpage":"1335","id":"c8e192aa-91fe-4cd1-8bdf-6f6c4f3fcfc3","issue":"12","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"f2f2d6a1-a8f0-44ae-877d-8bb5c7735085","keyword":"纳米颗粒","originalKeyword":"纳米颗粒"},{"id":"39ef24a2-8987-428b-91a4-477ebde5ac68","keyword":"磁性三氧化二铁","originalKeyword":"磁性三氧化二铁"},{"id":"4f5ba328-ed29-4f44-81dc-e700118489d1","keyword":"石墨烯","originalKeyword":"石墨烯"},{"id":"398f903d-2b3e-4617-a81c-cdf3ceb01491","keyword":"水热法","originalKeyword":"水热法"},{"id":"fe504be4-6e5e-4e4d-9fc5-7dd2e924b3a8","keyword":"复合材料","originalKeyword":"复合材料"}],"language":"zh","publisherId":"wjclxb201612010","title":"络合法制备均匀γ-Fe2O3纳米颗粒@多层石墨烯复合材料研究","volume":"31","year":"2016"},{"abstractinfo":"采用水热法制备了平均尺寸为37.5nm的超细Fe2O3颗粒,由X射线衍射确认晶体结构为菱形晶系.通过透射电镜及激光散射分析,发现Fe2O3纳米颗粒在水溶液中存在软团聚,团聚体为球形,尺寸在100~200nm.Fe2O3对乙醇气体的敏感性能及Fe2O3作为气敏元件的长期稳定性测试结果表明,Fe2O3材料对乙醇有好的气敏性,具有长期稳定性,并加热功率增加,气氛浓度增大,Fe2O3材料的响应时间、恢复时间均缩短.","authors":[{"authorName":"龚晓钟","id":"35fe8131-fdbe-4375-968f-e82adac7e4af","originalAuthorName":"龚晓钟"},{"authorName":"汤皎宁","id":"3e1b9e8f-ce2e-4a78-8f1f-d2f0b5784337","originalAuthorName":"汤皎宁"},{"authorName":"李均钦","id":"2170af78-655c-4a59-9d2c-21032a90d248","originalAuthorName":"李均钦"}],"doi":"10.3969/j.issn.1009-6264.2005.05.005","fpage":"18","id":"2d23f64f-e774-4d7a-958e-20d723761e7f","issue":"5","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"769784aa-7285-4c7d-98cc-0867d707bd57","keyword":"Fe2O3纳米颗粒","originalKeyword":"Fe2O3纳米颗粒"},{"id":"a1287dd8-62c8-4029-ba2b-18ea871346b5","keyword":"水热法","originalKeyword":"水热法"},{"id":"67126b26-f645-4d4d-aec0-fba0a17a9d73","keyword":"气敏性","originalKeyword":"气敏性"}],"language":"zh","publisherId":"jsrclxb200505005","title":"纳米Fe2O3微粒的制备及其表征","volume":"26","year":"2005"},{"abstractinfo":"采用三种工艺合成出不同结构的Al/Fe2O3纳米复合物.运用扫描电镜、X射线衍射仪、差示扫描量热仪等对产物进行对比表征,结果表明采用溶胶-凝胶法制备的纳米Al/Fe2O3颗粒粒径均在100 nm以内,而传统混合或简单复合工艺制备的Al/Fe2O3颗粒尺度在微米或亚微米级;XRD证实合成产物纯度高;热分析数据显示纳米Al/Fe2O3初始分解峰温较低,而放热焓值偏高,说明材料纳米化在改善安全性的同时显著提高了能量释放速率.","authors":[{"authorName":"董晶","id":"a2516854-d6a6-4e0b-9b61-703d27868a56","originalAuthorName":"董晶"},{"authorName":"任慧","id":"6f6ed506-822f-4e19-a398-9ccbd71ceb82","originalAuthorName":"任慧"},{"authorName":"焦清介","id":"39c555dd-824e-447d-8644-74d596f7cb1a","originalAuthorName":"焦清介"},{"authorName":"王思懿","id":"2b95dc61-7d16-40dd-a9d2-6fe755c38e83","originalAuthorName":"王思懿"}],"doi":"","fpage":"2696","id":"9653ea6b-1fb1-4979-9bc6-63f63289b5fe","issue":"12","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"19d426fc-3ebe-4765-a839-ece446fca933","keyword":"铝热剂","originalKeyword":"铝热剂"},{"id":"cad9e35b-115c-4f66-a553-0081774c7c45","keyword":"制备工艺","originalKeyword":"制备工艺"},{"id":"e0f95f6a-48a5-437f-8a09-3824e6972b77","keyword":"显微结构","originalKeyword":"显微结构"},{"id":"ffe3214e-f2e3-4e57-8cb6-8337eb2342c9","keyword":"点火阈值","originalKeyword":"点火阈值"}],"language":"zh","publisherId":"rgjtxb98201312039","title":"不同结构Al/Fe2O3纳米复合物的对比研究","volume":"42","year":"2013"},{"abstractinfo":"采用微乳液技术制备了α-Fe2O3纳米棒前驱物,在KNO3熔盐中焙烧成功合成了α-Fe2O3纳米棒一维纳米材料.用TEM、XRD和XPS对其进行了表征,结果表明α-Fe2O3纳米棒直径约为80nm,尺寸分布比较均匀,长度为1~5μm.简单讨论了影响α-Fe2O3纳米棒在KNO3熔盐中形成的因素和α-Fe2O3纳米棒的形成机理.","authors":[{"authorName":"赵鹤云","id":"f888724b-f0ab-4396-8960-9407b64473ef","originalAuthorName":"赵鹤云"},{"authorName":"李跃华","id":"f069f97d-9958-49f2-a235-7c35b7957955","originalAuthorName":"李跃华"},{"authorName":"朱文杰","id":"ad945500-5e9c-43ab-98c7-279ff82dd5ab","originalAuthorName":"朱文杰"},{"authorName":"柳清菊","id":"541c279e-6921-4e80-9492-325d3065d316","originalAuthorName":"柳清菊"},{"authorName":"吴兴惠","id":"ed8b1fb6-bab0-43e4-b36c-09cae24ed9ec","originalAuthorName":"吴兴惠"}],"doi":"","fpage":"133","id":"9228b8d0-4b99-42a4-8e7b-737c01252054","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"90463483-209b-4d1e-ae5b-21cd1a9f004a","keyword":"α-Fe2O3","originalKeyword":"α-Fe2O3"},{"id":"49dd524a-975e-430b-a290-0d970fdc6a35","keyword":"纳米棒","originalKeyword":"纳米棒"},{"id":"d29058cf-3b6a-45d5-bd9a-707369ccf387","keyword":"熔盐","originalKeyword":"熔盐"},{"id":"b0ff46e0-055e-4860-8f23-993d961dc7b9","keyword":"一维纳米材料","originalKeyword":"一维纳米材料"}],"language":"zh","publisherId":"cldb2006z1043","title":"KNO3熔盐中α-Fe2O3纳米棒的制备研究","volume":"20","year":"2006"}],"totalpage":12224,"totalrecord":122232}