{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"利用Setsys Evolution同步热分析仪,以等温热重法对焦炭-CO2气化动力学进行了研究.结果显示:当气化温度高于1200 K时,碳转化率和气化反应速率均显著增大;当气化温度达到1500 K左右时,焦炭的气化反应速率达到最大值.由相关系数可知,改良Coats-Redfern积分法是求取焦炭-CO2气化反应动力学参数的较好方法.鞍钢焦炭的活化能大于宝钢焦炭.宝钢焦炭的气化性能优于相同粒度的鞍钢焦炭.","authors":[{"authorName":"刘忠锁","id":"afa40849-83d4-4719-b7f6-ef37eeff9bc0","originalAuthorName":"刘忠锁"},{"authorName":"汪琦","id":"0c086fa2-5529-49e3-b4cb-3ba7c4724f7d","originalAuthorName":"汪琦"},{"authorName":"邹宗树","id":"5bfd653d-5649-4cd1-8f22-0c3ac4e057cd","originalAuthorName":"邹宗树"},{"authorName":"谭广雷","id":"30c63bfe-be6e-449c-8d96-5704ad9f5c10","originalAuthorName":"谭广雷"}],"doi":"","fpage":"1","id":"c59a6ebb-04dd-4c12-9ea0-53da17528197","issue":"6","journal":{"abbrevTitle":"GTYJ","coverImgSrc":"journal/img/cover/GTYJ.jpg","id":"29","issnPpub":"1001-1447","publisherId":"GTYJ","title":"钢铁研究"},"keywords":[{"id":"fb41111a-ad24-4008-8234-f2ea66455f7d","keyword":"焦炭","originalKeyword":"焦炭"},{"id":"ab9fb99a-7071-4dae-accc-33a591bcd08a","keyword":"气化","originalKeyword":"气化"},{"id":"608083d2-7566-4d0e-b155-b97edbcaf668","keyword":"动力学","originalKeyword":"动力学"},{"id":"021732e5-a071-4dac-8f97-42d1453f316f","keyword":"等温热重法","originalKeyword":"非等温热重法"},{"id":"b7a24161-4ce8-4f0b-90cf-84bef026e34d","keyword":"CO2","originalKeyword":"CO2"}],"language":"zh","publisherId":"gtyj201006001","title":"焦炭-CO2气化动力学的等温热重法研究","volume":"38","year":"2010"},{"abstractinfo":"在半封闭系统中采用直接热解三聚氰胺的方法制备了C3N4,XRD、XPS及元素分析的结果证明了产物是类石墨相C3N4(g-C3N4).用热分析(TG/DTG)研究了g-C3N4的热分解过程.通过迭代法计算了热分解反应活化能Ea,采用积分法结合36种动力学函数来判断g-C3N4热分解的机理函数.计算结果表明,g-C3N4的平均热分解活化能Ea为178.59kJ/mol,可能的动力学函数积分形式是g(a)=[-In(1-a)]4,指前因子A为21.67s-1,对应的热分解动力学方程为:dα/dT=(21.67/β)exp(-178.59×103/RT)×1/4(1-α)[-ln(1-α]-3","authors":[{"authorName":"杭祖圣","id":"74dde9fe-9358-445b-9af9-3322936c2b63","originalAuthorName":"杭祖圣"},{"authorName":"谈玲华","id":"e8d909b3-3f78-4036-8a2f-c0d490018873","originalAuthorName":"谈玲华"},{"authorName":"黄玉安","id":"28ac52a9-4981-4848-a71d-bed6436c03a4","originalAuthorName":"黄玉安"},{"authorName":"应三九","id":"63664f46-a726-4b0a-9a2d-cdc87556694c","originalAuthorName":"应三九"},{"authorName":"徐复铭","id":"5dd02722-9118-4cb7-88cf-d9e75f7b7c07","originalAuthorName":"徐复铭"}],"doi":"","fpage":"329","id":"a04d7e0e-0b2d-4f76-9303-f123185ccaac","issue":"2","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"01ecc63a-9eae-4f3d-b0b8-c544aeeb0266","keyword":"等温热重法","originalKeyword":"非等温热重法"},{"id":"1226bf1c-4fb4-4bfb-9ab5-5acfe65cacbb","keyword":"g-G3N4","originalKeyword":"g-G3N4"},{"id":"beadce9b-b27c-409d-82e9-432cea17bce5","keyword":"热分解动力学","originalKeyword":"热分解动力学"},{"id":"650f1bea-0472-4e87-a625-803edaae5e2e","keyword":"迭代法","originalKeyword":"迭代法"}],"language":"zh","publisherId":"gncl201102036","title":"等温热重法研究g-C3N4热分解动力学","volume":"42","year":"2011"},{"abstractinfo":"以硝化纤维(NC)、异佛尔酮二异氰酸酯(IPDI)三聚体、二羟甲基丙酸(DMPA)为原料,通过自乳化方法合成了水性硝化纤维(WNC).通过傅里叶变换红外光谱(FT-IR)对目标产物的结构进行表征;采用热重法(TG)研究了WNC薄膜中硝化纤维基体的热分解行为;并分别采用Kissinger法、Ozawa法求解出热分解反应的活化能和频率因子等动力学常数,结合9种常用的动力学函数来判断WNC中硝化纤维基体的热分解机理函数.结果表明:水性硝化纤维基体的热稳定性明显提高,平均热分解活化能为221.31 kJ/mol、频率因子为1.108 2×1024 s-1,热分解反应遵从Sigmoidal类型中的随机核化机理.","authors":[{"authorName":"张丹","id":"fee2c04f-9895-4574-8ced-cfde416e95cc","originalAuthorName":"张丹"},{"authorName":"苏秀霞","id":"1eb994e8-3c73-420d-8a75-729388d4ef8d","originalAuthorName":"苏秀霞"},{"authorName":"毛敏","id":"7599aea5-bf56-42ba-9f25-88be0ae8ce92","originalAuthorName":"毛敏"},{"authorName":"郭明媛","id":"c9d005a7-7a74-4091-9227-4b5e13e7e8f6","originalAuthorName":"郭明媛"}],"doi":"","fpage":"13","id":"70b06509-955f-4e47-98d2-a5983e4993ab","issue":"8","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"d7f6f149-58ec-4a94-a202-d423872680c0","keyword":"水性硝化纤维","originalKeyword":"水性硝化纤维"},{"id":"0c4e1e41-58ac-41c6-8841-848c33f287ee","keyword":"等温热重法","originalKeyword":"非等温热重法"},{"id":"921f135c-6b66-422d-932c-30edbb239e57","keyword":"TGA/DTG","originalKeyword":"TGA/DTG"},{"id":"09f2f733-bc96-4711-aff4-27ff872c603d","keyword":"热分解动力学","originalKeyword":"热分解动力学"}],"language":"zh","publisherId":"tlgy201308003","title":"水性硝化纤维涂膜的热分解动力学","volume":"43","year":"2013"},{"abstractinfo":"为了清楚地阐述半焦的燃烧过程,采用等温热重法研究了氧气体积分数对半焦燃烧动力学的影响.得出挥发分析出燃烧、碳燃烧失重规律及其描述函数,挥发分析出燃烧和碳燃烧所需的表观活化能和表观指前因子.结果表明:挥发分析出燃烧所需的表观活化能和表观指前因子的最小值处于φ(O2) =28%的条件下,最大值处于φ(O2)=30%的条件下;碳燃烧所需表观活化能和表观指前因子的最小值处于φ(O2) =24%,最大值处于φ(O2)=30%条件下.","authors":[{"authorName":"郝丽莹","id":"8adca6a1-b2dc-4f16-9e78-f453f2cc5924","originalAuthorName":"郝丽莹"},{"authorName":"龚志军","id":"8d6695e6-0c03-4160-86c9-900ee878a723","originalAuthorName":"龚志军"},{"authorName":"郑坤灿","id":"37a932e0-dfbc-4538-87af-f1c638a0d387","originalAuthorName":"郑坤灿"},{"authorName":"武文斐","id":"dccc0936-2f72-4561-b0c6-9c8aaa6be105","originalAuthorName":"武文斐"}],"doi":"","fpage":"5","id":"63e904cc-c902-4ac3-93bf-1659423ac57a","issue":"2","journal":{"abbrevTitle":"GTYJ","coverImgSrc":"journal/img/cover/GTYJ.jpg","id":"29","issnPpub":"1001-1447","publisherId":"GTYJ","title":"钢铁研究"},"keywords":[{"id":"828c684f-965a-4f16-8f1c-7e047e9ca954","keyword":"半焦","originalKeyword":"半焦"},{"id":"bf58fb0a-c2b2-4f62-968c-16b51cebf10b","keyword":"热重法","originalKeyword":"热重法"},{"id":"a20f6331-7d3d-407d-b2f7-354b6c8fd0a8","keyword":"动力学","originalKeyword":"动力学"}],"language":"zh","publisherId":"gtyj201602002","title":"分峰法分析半焦燃烧动力学的等温热重实验","volume":"44","year":"2016"},{"abstractinfo":"利用德国耐驰STA 409 CD型热分析仪对YBCO化合物合成过程进行了研究.采用普适积分法,微分法及多重速率扫描Kissinger法相结合的方式来确定合成反应的机理,求解动力学参数.结果表明,YBCO超导体合成反应遵守随机成核和随后生长模型.利用积分法和微分法求得合成反应的平均表观活化能为174 kJ·mol-1.","authors":[{"authorName":"洪成哲","id":"8a773a35-ddd5-4626-a9ba-492b2ee0a38b","originalAuthorName":"洪成哲"},{"authorName":"罗清威","id":"757b83e5-abcb-4304-ad0d-480cc87e5034","originalAuthorName":"罗清威"},{"authorName":"冉阿倩","id":"617305ce-5e3c-486b-9d16-4ad346624494","originalAuthorName":"冉阿倩"},{"authorName":"樊占国","id":"bf738b06-9f88-4268-9401-6b644fdc7cdc","originalAuthorName":"樊占国"}],"doi":"10.3969/j.issn.1671-6620.2011.01.005","fpage":"19","id":"4f81f4bd-7bb7-437a-bfde-2816bd44198a","issue":"1","journal":{"abbrevTitle":"CLYYJXB","coverImgSrc":"journal/img/cover/CLYYJXB.jpg","id":"17","issnPpub":"1671-6620","publisherId":"CLYYJXB","title":"材料与冶金学报"},"keywords":[{"id":"7cc8d776-b91d-4a43-941b-e67b7fea51a2","keyword":"化学溶液沉积","originalKeyword":"化学溶液沉积"},{"id":"70ed8851-8955-4b2b-bc91-292323d1afaa","keyword":"YBCO合成","originalKeyword":"YBCO合成"},{"id":"030bdf3b-2e0b-418c-b5f8-8ceae3db3d46","keyword":"等温热重法","originalKeyword":"非等温热重法"},{"id":"5fb20b59-4660-4dfd-b0b8-3c22f54e62b5","keyword":"动力学","originalKeyword":"动力学"}],"language":"zh","publisherId":"clyyjxb201101005","title":"化学溶液沉积法中YBaCuO超导体合成反应动力学","volume":"10","year":"2011"},{"abstractinfo":"利用Labsys同步热分析仪以等温热重分析研究了碳气化反应动力学,考察了升温速率对碳气化反应的影响.在等温热重分析中,Doyle和Gorbatchev近似函数都可以模拟碳气化反应过程.通过对比这两个函数拟合实验数据的相关系数,确定在使用等温热重分析研究碳气化反应动力学时,使用Gorbatchev函数是求取反应动力学参数的较好方法.结果表明:活化能和指前因子都随着升温速率的增加而减小.活化能和指前因子之间有着较好的线性关系,碳气化反应过程中存在着动力学补偿效应.","authors":[{"authorName":"刘忠锁","id":"97b073bc-d3d6-4d9c-b1a9-506af0b1946e","originalAuthorName":"刘忠锁"},{"authorName":"汪琦","id":"555d70ef-65bf-4b73-9c19-7357a0785938","originalAuthorName":"汪琦"},{"authorName":"邹宗树","id":"26813d85-f754-4a99-bf58-44eada999a8e","originalAuthorName":"邹宗树"},{"authorName":"谭广雷","id":"4ccfb93e-fc2d-47c4-bc1f-4f756f906592","originalAuthorName":"谭广雷"}],"doi":"10.3969/j.issn.1671-6620.2010.01.015","fpage":"68","id":"4395df9c-6f98-4d8c-a06a-a215fcffeff0","issue":"1","journal":{"abbrevTitle":"CLYYJXB","coverImgSrc":"journal/img/cover/CLYYJXB.jpg","id":"17","issnPpub":"1671-6620","publisherId":"CLYYJXB","title":"材料与冶金学报"},"keywords":[{"id":"03d38946-c165-404f-aa64-0c0304a9ff4b","keyword":"等温","originalKeyword":"非等温"},{"id":"56c08be6-eeca-4acd-9329-cdbd10930e90","keyword":"热重分析","originalKeyword":"热重分析"},{"id":"96b2f84c-b5b1-4e55-a1e1-fcb8e0b6e28c","keyword":"碳气化","originalKeyword":"碳气化"},{"id":"c0a009e2-1ee6-477e-8f66-4238d785eb60","keyword":"动力学","originalKeyword":"动力学"}],"language":"zh","publisherId":"clyyjxb201001015","title":"等温热重分析研究碳气化动力学","volume":"9","year":"2010"},{"abstractinfo":"以天青石还原分解产物的浸取液(SrS)为原料, 氢氧化钠为辅助化工原料制备纯度>99.70%的Sr(OH)2·8H2O.利用差示扫描量热-热重法(DSC-TG)对Sr(OH)2·8H2O进行等温热分解试验研究, 并用Kissinger法和Freeman-Carroll法分析计算了热分解脱水反应动力学参数.结果表明: Sr(OH)2·8H2O在50℃左右开始脱水分解, 至130℃以上基本完全分解成粉末状的Sr(OH)2; Sr(OH)2·8H2O的热分解过程以两个阶段进行, 且两阶段吸热峰之间的温度范围小; 两阶段的热分解反应表观活化能分别为E1=75.26kJ/mol, E2=95.11kJ/mol, 其热分解反应级数依次为n1=1.17, n2=1.29.","authors":[{"authorName":"刘相果","id":"16b35d95-475c-4f8c-8a9d-2dd8d1b6f872","originalAuthorName":"刘相果"},{"authorName":"彭晓东","id":"3c0154d5-e76d-49cd-b987-96b0e6e168ab","originalAuthorName":"彭晓东"},{"authorName":"谢卫东","id":"d35453ed-43ce-4a09-a5d3-bac4c286c471","originalAuthorName":"谢卫东"},{"authorName":"刘江","id":"a22d4706-7cfc-4733-8794-eca52c1d5418","originalAuthorName":"刘江"},{"authorName":"权燕燕","id":"5a8e5474-e05d-4aa1-b409-a51e76509e6d","originalAuthorName":"权燕燕"}],"doi":"","fpage":"686","id":"ac9060ac-c3b1-4446-82c1-a3b66be57073","issue":"4","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"ddb5fdc0-5f38-485b-a0c5-d5caf4e2b8a3","keyword":"八水氢氧化锶","originalKeyword":"八水氢氧化锶"},{"id":"ae0e2fef-2aa4-43f8-95ba-ba9618204824","keyword":"制备","originalKeyword":"制备"},{"id":"a6312b22-aa15-43f9-b173-59392050cc5d","keyword":"等温热分解","originalKeyword":"非等温热分解"},{"id":"cd229781-297b-4324-9546-5dfe1de28c3d","keyword":"动力学参数","originalKeyword":"动力学参数"}],"language":"zh","publisherId":"zgysjsxb200404029","title":"Sr(OH)2·8H2O等温热分解动力学分析","volume":"14","year":"2004"},{"abstractinfo":"用等温热重分析法对氢气还原不同粒度细微氧化铁的动力学进行了研究。研究表明:铁矿粉粒度越小,起始反应温度越低,反应速度越快,反应达到平台期时所对应的还原率越高;平均粒度为3.5 mm的铁矿粉在400 ℃还原反应开始,700 ℃左右开始反应加快,达到平台期时的还原率为77%,而平均粒度为2 μm的铁矿粉在100 ℃已经开始反应,350 ℃反应加快,达到平台期时的还原率为98%,而且在600 ℃时还原率就达到了100%;铁矿粉粒度从3.5 mm降到2 μm后,还原反应的表观活化能从73.3 kJ/mol降低到30.46 kJ/mol;同时通过分析氢气还原氧化铁的反应机理得出,内扩散和界面化学反应均对整个反应过程起限制作用。","authors":[{"authorName":"庞建明","id":"db417ea5-ab00-4fda-9a54-f2130526fd8b","originalAuthorName":"庞建明"},{"authorName":"郭培民","id":"dbdcebff-358b-46b0-89c7-44c26b231ffa","originalAuthorName":"郭培民"},{"authorName":"赵沛","id":"b0385aba-0e0f-470c-ad0d-e001a76002a7","originalAuthorName":"赵沛"},{"authorName":"曹朝真","id":"bc6f1d80-344f-47ac-96e5-be7ed01b02bb","originalAuthorName":"曹朝真"}],"categoryName":"|","doi":"","fpage":"11","id":"563eaf6c-a245-4374-ae67-cb78bc2c37df","issue":"2","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"aec603c3-af3a-4814-9567-1ee6de5ae0fa","keyword":"等温方法;氧化铁;动力学;热重分析","originalKeyword":"非等温方法;氧化铁;动力学;热重分析"}],"language":"zh","publisherId":"0449-749X_2009_2_3","title":"氢气还原氧化铁动力学的等温热重方法研究","volume":"44","year":"2009"},{"abstractinfo":"利用热重(TG)分析技术研究了端羟基超支化聚酯(HBP)以及十八酸改性的超支化聚酯(MHBP)的热失重行为,运用Flynn-Wal-l Ozawa法和Coats-Redfern法对等温热分解动力学数据进行了分析。结果表明,HBP的分解过程分为三个阶段,三个阶段的表观活化能分别为120.238 kJ/mol、149.775 kJ/mol、173.540 kJ/mol,指前因子分别为1.386×10^9min^-1、1.341×10^9min^-1、4.569×10^12min^-1;MHBP的分解过程仅有一个阶段,表观活化能和指前因子分别为204.275kJ/mol和2.417×10^14min^-1。超支化聚酯的热稳定性与其端基有关,十八酸改性的超支化聚酯由于长链烷烃具有结晶性,因而热稳定性优于端羟基超支化聚酯。","authors":[{"authorName":"刘晶如","id":"e9bcba3f-e6ef-4ef2-9b68-b84339bb5038","originalAuthorName":"刘晶如"},{"authorName":"巢玲玲","id":"52d8ff68-6d55-4620-8501-e1240d9d55c3","originalAuthorName":"巢玲玲"},{"authorName":"俞强","id":"363db2d5-5c35-4b70-ad08-cdd6cf658597","originalAuthorName":"俞强"}],"doi":"","fpage":"76","id":"8e160d28-53a9-493f-aad1-1d5823e47caf","issue":"4","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"99ba7c6b-a143-404b-9464-209ab8acb161","keyword":"超支化聚酯","originalKeyword":"超支化聚酯"},{"id":"811948b8-e60a-44f3-a7f0-62af393d83b0","keyword":"热分解动力学","originalKeyword":"热分解动力学"},{"id":"e63a208e-5706-4fb8-93f0-d87eeeee315f","keyword":"热重分析","originalKeyword":"热重分析"}],"language":"zh","publisherId":"gfzclkxygc201204020","title":"超支化聚酯的等温热分解动力学","volume":"28","year":"2012"},{"abstractinfo":"用等温热量分析法对氢气还原不同粒度细微氧化铁的动力学进行了研究.研究表明:铁矿粉粒度越小,起始反应温度越低,反应速度越快,反应达到平台期时所对应的还原率越岛;平均粒度为3.5 mm的铁矿粉在400℃还原反应开始,700℃左右开始反应加快,达到平台期时的还原率为77%,而平均粒度为2 μm的铁矿粉在100℃已经开始反应,350℃反应加快,达到平台期时的还原率为98%,而且在600℃时还原率就达到了100%;铁矿粉粒度从3.5 mm降到2 μm后,还原反应的表观活化能从73.3 kJ/mol降低到30.46 kJ/mol;同时通过分析氢气还原氧化铁的反应机理得出,内扩散和界面化学反应均对整个反应过程起限制作用.","authors":[{"authorName":"庞建明","id":"2b92e157-5961-49db-a3ac-441faecc4fc5","originalAuthorName":"庞建明"},{"authorName":"郭培民","id":"55f1196f-d0d6-4aad-9032-7bb049f1af07","originalAuthorName":"郭培民"},{"authorName":"赵沛","id":"4a81302c-4aac-450d-b76a-a4474a1dfd16","originalAuthorName":"赵沛"},{"authorName":"曹朝真","id":"3f9213dc-a245-478a-abce-0ebf9b6fdada","originalAuthorName":"曹朝真"}],"doi":"","fpage":"11","id":"d009ba73-2fed-4ddb-8194-b973c216685a","issue":"2","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"9a52cd29-38e7-4033-9e8a-0c6541f7c634","keyword":"等温方法","originalKeyword":"非等温方法"},{"id":"ad7bea6f-cde3-4c38-a2ba-6fc61bd4f5e2","keyword":"氧化铁","originalKeyword":"氧化铁"},{"id":"b89a635d-50dd-47a1-9bda-a3ca8dfa73f4","keyword":"动力学","originalKeyword":"动力学"},{"id":"33db8d12-6e50-4849-b5d9-36fca02628f3","keyword":"热重分析","originalKeyword":"热重分析"}],"language":"zh","publisherId":"gt200902002","title":"氢气还原氧化铁动力学的等温热重方法研究","volume":"44","year":"2009"}],"totalpage":1544,"totalrecord":15432}