{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"氮化铜(Cu_3N)薄膜是一种新型的电、光学材料,它具有典型的反三氧化铼结构,由于Cu原子没有很好地占据(111)晶格面的紧密位置.在薄膜中掺杂之后,薄膜的电、光学性质会发生显著变化.Cu_3N在较低温度下会分解为Cu和N_2.介绍了Cu_3N的制备方法,总结了该膜制备方法和工艺参数对薄膜结构的影响,分析了在不同N_2分压下薄膜由(111)晶面转向(100)晶面择优生长和薄膜定向生长的原因,讨论了薄膜的电学、光学、热学等物理性质及其在相关方面的应用,并对该膜的物理性质与结构之间的关系作了简要分析.","authors":[{"authorName":"肖剑荣","id":"b5812f75-a9e7-4af5-bb81-54a3391a780a","originalAuthorName":"肖剑荣"},{"authorName":"蒋爱华","id":"ded2e1af-adc3-48cc-baf5-71d23d98be29","originalAuthorName":"蒋爱华"}],"doi":"","fpage":"115","id":"0eed78e5-dcdb-4ccf-bd32-130dc083d863","issue":"21","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"f7c8cf24-b7af-4e80-9ad6-7c2dfa9df1b6","keyword":"氮化铜薄膜","originalKeyword":"氮化铜薄膜"},{"id":"c6eff8fb-5944-449e-93df-fb3a8f350abb","keyword":"光学带隙","originalKeyword":"光学带隙"},{"id":"6ce75c24-f762-4f2f-b442-265c65524793","keyword":"热稳定性","originalKeyword":"热稳定性"},{"id":"0f9fa82f-4228-494d-998d-9c4fb3f6e8d2","keyword":"磁控溅射","originalKeyword":"磁控溅射"}],"language":"zh","publisherId":"cldb200921026","title":"氮化铜薄膜的研究","volume":"23","year":"2009"},{"abstractinfo":"以CH4和CF4的混合气体作源气体,利用等离子体增强型化学气相沉积法(PECVD),改变射频功率,制备了一批氟化非晶碳薄膜样品.用原子力显微镜(AFM)观察了薄膜的表面形貌,发现随着射频功率增大,薄膜均匀性变差,掩蔽效应作用加剧.FITR光谱分析表明:薄膜中主要含有CFx和C=C键,较低功率下沉积的薄膜中主要含有CF2和CF3,较高功率下沉积的薄膜中主要含CF和CF2.Raman光谱分析发现在较高沉积功率下沉积的薄膜中出现了由sp2和sp3混合微晶结构.","authors":[{"authorName":"刘雄飞","id":"4ae77577-bf74-409c-bdfd-3bcea46909e1","originalAuthorName":"刘雄飞"},{"authorName":"高金定","id":"2867e1d0-c447-4136-b1c0-c78c8ad67aa7","originalAuthorName":"高金定"},{"authorName":"肖剑荣","id":"6367e465-c3b4-4044-a3ed-1fc79badcb7e","originalAuthorName":"肖剑荣"},{"authorName":"张云芳","id":"29b710ec-eb5b-464e-963c-e8681c8d06c4","originalAuthorName":"张云芳"},{"authorName":"周昕","id":"2136d70c-4b39-4b9e-ba1d-8e9bf09ac18d","originalAuthorName":"周昕"}],"doi":"10.3969/j.issn.1009-9239.2004.04.012","fpage":"38","id":"2bfd1672-5cbc-4d8f-8a10-2bf573c0c9d7","issue":"4","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"5827e238-6bc0-4ff7-83db-50be469af827","keyword":"射频功率","originalKeyword":"射频功率"},{"id":"3e6d9e16-c798-4bdd-b12d-8beb15fc5868","keyword":"氟化非晶碳薄膜","originalKeyword":"氟化非晶碳薄膜"},{"id":"517eaf25-3eda-4e90-b1cf-a333e9c7e6dd","keyword":"微观性能","originalKeyword":"微观性能"}],"language":"zh","publisherId":"jycltx200404012","title":"射频功率对氟化非晶碳薄膜微观性能的影响","volume":"37","year":"2004"},{"abstractinfo":"使用CF4和CH4为源气体,利用射频等离子体增强化学气相沉积法,制备了a-C:F:H薄膜样品.采用拉曼光谱仪、傅里叶变换红外光谱仪、X射线光电子能谱仪(XPS)对薄膜的结构进行了测试和分析.研究发现:该膜呈空间网状结构,膜内碳与氟、氢的结合主要以sp3形式存在,而sp2形式的含量相对较少;在薄膜内主要含有C-Fx(x=1,2,3)、C-C、C-H2、C-H3等以及不饱和C=C化学键;同时,薄膜中C-C-F键的含量比C-C-F2键的含量要高.在不同功率下沉积的薄膜,其化学键结构明显不同.","authors":[{"authorName":"肖剑荣","id":"d5cd55db-51af-4ffa-b77d-07107d4a1f1e","originalAuthorName":"肖剑荣"},{"authorName":"徐慧","id":"60319c7e-bd44-4025-a8e8-4a1e97a3c6e5","originalAuthorName":"徐慧"},{"authorName":"李幼真","id":"2edd9417-5be2-49dd-b6b7-5f4638075b40","originalAuthorName":"李幼真"},{"authorName":"刘雄飞","id":"650ab986-5ceb-47a8-8173-da3ed793a8a8","originalAuthorName":"刘雄飞"},{"authorName":"马松山","id":"4a9ab7f8-6350-46a2-b9be-a5f4fb4039a0","originalAuthorName":"马松山"},{"authorName":"简献忠","id":"5545c2c7-a30a-4878-bb1e-c34f27a89821","originalAuthorName":"简献忠"}],"doi":"","fpage":"1589","id":"9b1c35bd-9a0c-4de8-9d8c-dd65e137d126","issue":"10","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"9de0974a-e422-475d-b659-1306cfd750ba","keyword":"a-C:F:H薄膜","originalKeyword":"a-C:F:H薄膜"},{"id":"c639f279-5f57-4ecb-a474-90fa77c422c7","keyword":"等离子体增强化学气相沉积","originalKeyword":"等离子体增强化学气相沉积"},{"id":"8b7f1713-4a68-4f1b-9f89-e7b8a9855cd1","keyword":"低介电常数","originalKeyword":"低介电常数"},{"id":"e0923a9a-98ee-416b-b7d7-cd2966341032","keyword":"化学键","originalKeyword":"化学键"}],"language":"zh","publisherId":"zgysjsxb200510019","title":"a-C:F:H薄膜的化学键结构","volume":"15","year":"2005"},{"abstractinfo":"氟化非晶碳(a-C:F)薄膜是一种电、光学新材料.介绍了它的制备方法,对其制备工艺作了较全面的探讨;分析了该膜制备方法和工艺参数对薄膜组分及化学键结构的影响;研究了该膜的电学、光学、热学、力学等物理性质及其在相关方面的应用,并对该膜的物理性质与制备工艺参数的关联作了详细的论述;指出介电常数和热稳定性的矛盾是阻碍该膜实用化的主要原因.","authors":[{"authorName":"刘雄飞","id":"7a451706-6bdc-47ba-bdfc-e28328341e59","originalAuthorName":"刘雄飞"},{"authorName":"肖剑荣","id":"0864767d-09fb-462b-aed5-faf94f3af582","originalAuthorName":"肖剑荣"},{"authorName":"李幼真","id":"1f5ff1eb-f853-4794-8b8b-34acfa74d53b","originalAuthorName":"李幼真"},{"authorName":"张云芳","id":"67ae7260-ff00-4234-84e7-007f22dececc","originalAuthorName":"张云芳"}],"doi":"","fpage":"48","id":"c24fccf3-d420-42dc-8604-dfbad4189c8d","issue":"10","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"675ad5ce-0535-4931-8178-9dde7853ebb6","keyword":"氟化非晶碳薄膜","originalKeyword":"氟化非晶碳薄膜"},{"id":"02162847-ba71-47b9-bd6f-d5d5da6ba5c1","keyword":"介电常数","originalKeyword":"介电常数"},{"id":"a0ddb011-b410-44d6-82a5-e7fe024c3ea5","keyword":"光学带隙","originalKeyword":"光学带隙"},{"id":"463ec2c8-3eb6-4a0e-95b3-0f6699ffab11","keyword":"热稳定性","originalKeyword":"热稳定性"},{"id":"40379947-9289-4eb9-9399-cb20fc5824e0","keyword":"化学气相沉积","originalKeyword":"化学气相沉积"}],"language":"zh","publisherId":"cldb200310014","title":"氟化非晶碳(a-C:F)薄膜的研究","volume":"17","year":"2003"},{"abstractinfo":"按照一般的无序理论,在非关联一维无序材料中不存在扩展态,在绝对零度下,电子的波函数是局域的,系统表现为绝缘体.在关联无序系统中,格点能量之间的长程关联,即对角关联,能导致扩展的波函数并由此导致系统的导电性.当关联强度于某一阈值,可以发现在热力学极限之下有存在于较宽能带范围内的扩展态,此阈值即为体系的金属-绝缘体转变临界点.考虑格点之间的长程相互作用势,即非对角关联时,在一维系统中通过使用传输矩阵方法,可以获得电子态的一些本质效应,长程跳跃可以改变系统的有效维度并能导出一维体系中存在有依赖于关联强度的金属-绝缘体转变.","authors":[{"authorName":"刘小良","id":"fffdbd43-b807-4484-9a17-35265efd47d6","originalAuthorName":"刘小良"},{"authorName":"徐慧","id":"a5d58645-bdf4-4200-95e9-b162922f0aa1","originalAuthorName":"徐慧"},{"authorName":"马松山","id":"cd9bfff4-4037-4aa2-b47b-d8120c19afb0","originalAuthorName":"马松山"},{"authorName":"肖剑荣","id":"f6329acd-73b1-4894-b3b7-f0bf800626e4","originalAuthorName":"肖剑荣"}],"doi":"","fpage":"20","id":"eb77b88f-0cba-45cc-a04c-06d45bbeccf5","issue":"9","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"be72d26b-4318-4c66-ae3d-1ee45917911f","keyword":"无序","originalKeyword":"无序"},{"id":"168ac7aa-e783-4cfa-9e26-0eae71217b5f","keyword":"关联","originalKeyword":"关联"},{"id":"2456331a-7c36-4add-aeac-405219a100fb","keyword":"长程跳跃","originalKeyword":"长程跳跃"},{"id":"40b298c3-ff4c-4ea1-98cb-5299214b330a","keyword":"金属-绝缘体转变","originalKeyword":"金属-绝缘体转变"}],"language":"zh","publisherId":"cldb200509006","title":"关联无序材料中电子态的研究方法","volume":"19","year":"2005"},{"abstractinfo":"通过密封加热熔融的方式制备了添加CNT的活性炭/硫锂离子电池正极活性材料,并对其进行PEG包覆复合改性,制备了C-CNT/S(PEG)正极复合材料.X射线衍射(XRD)图谱显示复合材料具有较强的非晶结构,且单质硫分散在碳材料的微孔之中.扫描电镜(SEM)显示CNT均匀分散在复合材料之中,并形成了三维导电结构.放电比容量测试显示CNT的加入提高了复合材料的放电比容量;PEG包覆的复合改性材料首次放电比容量高达1371.1 mAh/g,循环50次后放电比容量为662.8 mAh/g.说明添加CNT及PEG包覆复合改性,使活性炭/硫正极材料的电化学性能显著提高.","authors":[{"authorName":"赵航","id":"bbd2ca8f-d77f-435f-8cf0-bbe0282dd435","originalAuthorName":"赵航"},{"authorName":"肖剑荣","id":"011336ee-bd3f-464a-9708-6149f54f3e9c","originalAuthorName":"肖剑荣"},{"authorName":"蒋皓宇","id":"c0fb0c88-bf44-46c6-8918-07da14b885a0","originalAuthorName":"蒋皓宇"},{"authorName":"王宏哲","id":"a4f9af91-9378-4569-a2ac-2e8d96ee2ecb","originalAuthorName":"王宏哲"},{"authorName":"李延伟","id":"ae708aab-4fc4-4a93-b9e1-30de8f5a44c7","originalAuthorName":"李延伟"}],"doi":"","fpage":"928","id":"8b4a004c-fde9-4391-b5b6-d72ff6be96b1","issue":"4","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"08787690-b65a-4031-a019-7ba204c8c3d9","keyword":"CNT","originalKeyword":"CNT"},{"id":"34c6f44a-643d-42cd-8e4d-438769573572","keyword":"包覆","originalKeyword":"包覆"},{"id":"ddd670e5-5a76-4ae7-a046-07a13bd237aa","keyword":"PEG","originalKeyword":"PEG"},{"id":"e71fd823-c312-43ff-a53a-b5e3d4088601","keyword":"锂硫电池","originalKeyword":"锂硫电池"},{"id":"244bb3b1-fdff-4740-b358-482db1c289b5","keyword":"正极材料","originalKeyword":"正极材料"}],"language":"zh","publisherId":"xyjsclygc201604021","title":"活性炭-CNT/PEG/硫复合材料的制备与储锂性能研究","volume":"45","year":"2016"},{"abstractinfo":"青铜兵器是青铜时代耀眼的明珠,其中青铜剑最为引人注目.本文从青铜剑的成分组成、铸造工艺和表面 处理技术三方面首次进行了全面、系统、科学的论述,为青铜器的防腐保护工作提供借鉴.","authors":[{"authorName":"郑利平","id":"74b24934-a2f0-4414-b39f-3bd1a9cb10a9","originalAuthorName":"郑利平"}],"doi":"10.3969/j.issn.1000-6826.2008.02.021","fpage":"60","id":"edbb2b2f-06f6-454f-a225-f7a783317fe0","issue":"2","journal":{"abbrevTitle":"JSSJ","coverImgSrc":"journal/img/cover/3abe017a-2574-4821-8152-4ae974ef0471.jpg","id":"47","issnPpub":"1000-6826","publisherId":"JSSJ","title":"金属世界"},"keywords":[{"id":"9c489a7d-c9b7-44b5-bb41-87a834b1ecb8","keyword":"青铜","originalKeyword":"青铜"},{"id":"80d378b1-eb29-45ef-a515-3997ba4184f1","keyword":"古剑","originalKeyword":"古剑"},{"id":"4bda8b42-d35e-4c97-9f03-6130ab9d8bfc","keyword":"铸造技术","originalKeyword":"铸造技术"},{"id":"876b86ee-e1dc-4efd-b116-ccf26851a3d2","keyword":"分析","originalKeyword":"分析"}],"language":"zh","publisherId":"jssj200802021","title":"中国古代青铜剑的技术分析","volume":"","year":"2008"},{"abstractinfo":"利用纳米压痕技术,对3把出土于湖北的战国青铜剑残片表面富锡层的力学性能进行测试,并结合金相显微镜、扫描电镜、能谱仪和x射线衍射仪等仪器对其显微组织特征、合金成分进行了系统的表征。研究分析认为:(1)3把青铜剑残片属高锡青铜,表面存在一层由8相和非晶化合物构成的富锡层;(2)其双层结构中的惰性腐蚀层的特征表明富锡层是在长期埋藏环境中由于发生选择性腐蚀而形成的,排除了古代工匠人为处理的可能性。纳米压痕技术为古代金属样品微米级微区的力学性能的准确测试提供了有力的工具。","authors":[{"authorName":"何康","id":"1f35f46c-6021-41b2-8a7d-35bec9ee5bfe","originalAuthorName":"何康"},{"authorName":"李洋","id":"922fb7d3-580f-4c8d-8a62-90d004498cbd","originalAuthorName":"李洋"},{"authorName":"潘春旭","id":"e831ee94-3522-4df9-9139-2e73d1415f1f","originalAuthorName":"潘春旭"}],"doi":"","fpage":"50","id":"5ec845a3-6625-4560-bf6a-a6630d0d4898","issue":"11","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"7606d3c8-562a-442f-978f-d0ffa405fe0b","keyword":"纳米压痕技术","originalKeyword":"纳米压痕技术"},{"id":"69d46a39-6ba1-40a7-99ff-84961c63a268","keyword":"材料学特征","originalKeyword":"材料学特征"},{"id":"b9e7bdd3-8617-458d-93ad-421b05df5174","keyword":"战国青铜剑","originalKeyword":"战国青铜剑"},{"id":"ede0f7ea-a006-418d-b149-cbfd1d91a314","keyword":"湖北出土","originalKeyword":"湖北出土"},{"id":"5dad395a-0ec0-4d0b-a7e5-5a6c56ba2bb4","keyword":"富锡层","originalKeyword":"富锡层"},{"id":"04c2c601-9bba-4c34-a5de-b5c494f30e85","keyword":"选择性腐蚀","originalKeyword":"选择性腐蚀"}],"language":"zh","publisherId":"clbh201211019","title":"湖北出土战国青铜剑表面富锡层的材料学特征","volume":"45","year":"2012"},{"abstractinfo":"剖析了邯钢7号高炉配套的比肖夫式煤气洗涤塔的结构特点,运行状况与噪声超标、挂板脱落、橡胶补偿器易损坏、液压伺服阀堵塞、鲎口自动闭合堵塞气、液通道问题的具体原因,制定了相应的技术改造方案.实施后,取得了能够满足高炉与TRT正常生产和发电的需要,噪声也达到了国标要求,效果良好.","authors":[{"authorName":"杨子彬","id":"93e441ad-f505-4ff4-a99a-a92d98209107","originalAuthorName":"杨子彬"},{"authorName":"杨殿卿","id":"a38008b8-68d1-474a-97cc-61119b7b4d89","originalAuthorName":"杨殿卿"}],"doi":"10.3969/j.issn.1006-9356.2008.12.008","fpage":"32","id":"e61bd9c8-1aa7-4834-875e-e66cd2e05f8f","issue":"12","journal":{"abbrevTitle":"ZGYJ","coverImgSrc":"journal/img/cover/ZGYJ.jpg","id":"87","issnPpub":"1006-9356","publisherId":"ZGYJ","title":"中国冶金"},"keywords":[{"id":"3283fdb8-1c01-403c-865c-2bb880916cd3","keyword":"比肖夫式高炉煤气洗涤塔","originalKeyword":"比肖夫式高炉煤气洗涤塔"},{"id":"d6ca729c-7309-427c-9f38-db0d52663bb3","keyword":"结构技术改造","originalKeyword":"结构技术改造"}],"language":"zh","publisherId":"zgyj200812008","title":"比肖夫式高炉煤气洗涤塔的技术改造","volume":"18","year":"2008"},{"abstractinfo":"本研究以大型蚤毒性试验标准为参照进行剑水蚤的铜毒性试验,并以生物配体模型(BLM)为主要工具,实现对毒性数据的校正和毒性效应的预测.在不同水质参数下,实测铜的48 h LC50为141-566 μg·L-1,相应的BLM预测值为143-1208μg·L-1,表明BLM对铜的毒性预测良好.pH升高、DOC以及钙、镁、钠离子浓度的增加均对铜毒性有不同程度减弱作用,钾离子对铜毒性影响较小,BLM对这一现象的描述较好.利用Visual MINTEQ软件对不同水参数条件下铜形态分布进行模拟,辅助解释实验现象,发现钙、镁、钠、钾离子对铜形态分布影响较小.DOC的加入则使络合态铜含量增加,而pH升高导致游离态铜浓度下降,水合态铜浓度升高.本研究表明,预测铜对剑水蚤的毒性要充分考虑水质参数的影响,BLM在铜对剑水蚤的毒性预测方面表现了非常好的应用潜力.","authors":[{"authorName":"陈瑞","id":"c604b28e-32ef-4aea-b743-9633e69670a7","originalAuthorName":"陈瑞"},{"authorName":"吴敏","id":"207593ee-b55b-47bf-ada2-b1399276abd8","originalAuthorName":"吴敏"},{"authorName":"王万宾","id":"4dd79617-a323-4612-a43a-42d4425a64e1","originalAuthorName":"王万宾"},{"authorName":"吴爱民","id":"a1946d23-30a5-4bc6-82f9-d5f60d4ef65b","originalAuthorName":"吴爱民"},{"authorName":"赵婧","id":"30711d6e-1cd1-43be-898c-d8042fe3712c","originalAuthorName":"赵婧"},{"authorName":"陈季康","id":"e835b23a-4e67-46c8-ba05-6eba377480cc","originalAuthorName":"陈季康"},{"authorName":"潘波","id":"a811fe3a-a334-4f6d-a897-cfddab8a144c","originalAuthorName":"潘波"}],"doi":"10.7524/j.issn.0254-6108.2017.04.2016072602","fpage":"716","id":"060b95c8-14f5-4b05-b926-809a436869ee","issue":"4","journal":{"abbrevTitle":"HJHX","coverImgSrc":"journal/img/cover/HJHX.jpg","id":"43","issnPpub":"0254-6108","publisherId":"HJHX","title":"环境化学 "},"keywords":[{"id":"852f7be1-79bf-4aef-8c93-54a2bef39747","keyword":"剑水蚤","originalKeyword":"剑水蚤"},{"id":"b6c639c2-bf91-43a9-ad7b-2bb802989eb4","keyword":"铜毒性","originalKeyword":"铜毒性"},{"id":"0f8e83fa-23c8-4c15-8a03-fae69ae31af4","keyword":"生物配体模型","originalKeyword":"生物配体模型"},{"id":"3309784f-799f-4ba7-94b0-42c7114bbdef","keyword":"水质参数","originalKeyword":"水质参数"}],"language":"zh","publisherId":"hjhx201704004","title":"生物配位体模型预测铜对剑水蚤毒性及其受水质参数的影响","volume":"36","year":"2017"}],"totalpage":6,"totalrecord":58}