{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"通过将MoS2粉末和轴承珠放入真空球磨罐中进行球磨的方法在轴承珠表面制备自润滑涂层.固定球磨转速为200r/min,研究不同球磨时间对轴承珠表面制备涂层的影响.采用配有能谱的扫描电子显微镜对球磨不同时间所制备涂层的形貌及元素分布进行观察.结果表明:随球磨时间的延长,涂层表面形貌变化不大,涂层厚度先增加后减小,Mo的分布先均匀后分散,球磨5h后涂层的厚度及元素的均匀性最佳.制备涂层的摩擦测试结果表明:球磨1h和5h所制备的涂层具有明显的润滑效果,而球磨10h的润滑效果不明显.球磨5h所制备的涂层具有最佳的润滑效果.","authors":[{"authorName":"谭英梅","id":"e1d13689-b7c7-4bc7-adb6-ea1597f1f554","originalAuthorName":"谭英梅"},{"authorName":"曹国剑","id":"281ccf5e-3844-460a-8ffe-14bacb9e2e56","originalAuthorName":"曹国剑"},{"authorName":"李双","id":"1a425983-f692-4835-b813-fd22d74734c2","originalAuthorName":"李双"},{"authorName":"古乐","id":"f8c19314-854b-479a-9569-ca1323ce8c30","originalAuthorName":"古乐"}],"doi":"10.11868/j.issn.1001-4381.2015.09.004","fpage":"19","id":"e1c4ba4b-7155-4d73-8578-c3268b46be19","issue":"9","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"36d225b3-1e39-4bc4-b3e0-13c94e9690f2","keyword":"轴承珠","originalKeyword":"轴承珠"},{"id":"45ce37da-4bc1-4dfd-b2bd-e192c6787aea","keyword":"二硫化钼","originalKeyword":"二硫化钼"},{"id":"4fe9ea2a-73aa-4055-b1be-da528000b8c5","keyword":"行星式球磨","originalKeyword":"行星式球磨"},{"id":"592f268c-06db-472c-ab43-66ac1f68ed48","keyword":"摩擦","originalKeyword":"摩擦"}],"language":"zh","publisherId":"clgc201509004","title":"球磨制备轴承珠表面自润滑涂层及其摩擦性能","volume":"43","year":"2015"},{"abstractinfo":"用行星式球磨机对平均粒径约为10μm的SiC粉料进行了球磨,酸洗,制粉.发现粉料在酸化除铁过程中产生的硬团聚为Fe(OH)3胶桥所致;另外,测试溶液接近SiC等电点致使颗粒发生团聚,亦是粒度测试结果偏大的原因所在.深入分析了其物理化学变化过程与机理,制备出平均粒径为523nm的SiC粉料.","authors":[{"authorName":"申玉芳","id":"09d0756c-2fca-4255-a5bf-27cb08285cbd","originalAuthorName":"申玉芳"},{"authorName":"张振军","id":"58897601-8a0b-4809-96e7-d2b8aefc1d76","originalAuthorName":"张振军"},{"authorName":"邹正光","id":"4d8d650f-ff5d-4b48-80e5-9a7637c4b7ca","originalAuthorName":"邹正光"}],"doi":"","fpage":"152","id":"29cd7719-69ea-48d0-bedc-7bec16875b64","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"cddd71d7-d750-4c09-b118-6a2005742a5d","keyword":"行星式球磨 粒度 SiC微粉 Fe(OH)3胶桥","originalKeyword":"行星式球磨 粒度 SiC微粉 Fe(OH)3胶桥"}],"language":"zh","publisherId":"cldb2005z1050","title":"行星球磨法加工制备SiC超细粉","volume":"19","year":"2005"},{"abstractinfo":"使用行星式球磨机对陶瓷墙地砖原料进行细磨,选取球磨过程易控制的球料比、球磨转速、介质级配作为正交分析的因素,依据正交实验方法分析各因素所磨制陶瓷粉料粒度分布和粉磨效率的影响,从而根据实验结果对行星球磨工艺参数进行优化.最后对干法与湿法球磨所制得细粉颗粒形貌做了显微对比分析,结果显示干法球磨料与湿法球磨料的颗粒形貌相似,且各元素基本分布均匀.","authors":[{"authorName":"王宏联","id":"2276c6f1-e364-4f9d-b4ad-939745fe2765","originalAuthorName":"王宏联"},{"authorName":"徐茜","id":"07da93b0-5d7f-4539-be11-529b10a34f06","originalAuthorName":"徐茜"},{"authorName":"王续宁","id":"dd659f0f-9bcb-4bd9-bc00-02e29a0580b4","originalAuthorName":"王续宁"},{"authorName":"王璨","id":"6bfd55cc-4ebf-4089-a33b-105668371121","originalAuthorName":"王璨"}],"doi":"","fpage":"1626","id":"5249f00d-9219-4550-a483-c4965d805e24","issue":"6","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"b2d1b694-1628-42eb-987c-aaf68a62361e","keyword":"行星球磨","originalKeyword":"行星球磨"},{"id":"4d336b7d-e928-4227-8a57-36131b1eb379","keyword":"粉磨效率","originalKeyword":"粉磨效率"},{"id":"57f274d8-24bf-414e-9aac-dd684413eb89","keyword":"粒度分布","originalKeyword":"粒度分布"},{"id":"75bef3e1-f7ab-424a-996b-db604ce45418","keyword":"化学成分均匀性","originalKeyword":"化学成分均匀性"}],"language":"zh","publisherId":"gsytb201206056","title":"实验室用行星式球磨机干法制备陶瓷粉料工艺参数优化研究","volume":"31","year":"2012"},{"abstractinfo":"研究TiH 2粉末的高能行星球磨规律,然后使用制备出的球磨粉末开展压制?真空烧结,评价烧结样品的显微组织特征。结果表明,TiH 2粉末的高能球磨可划分为3个基本阶段:球磨初期粉末粒度迅速细化;球磨中期粉末粒度逐步趋向最小极限尺寸,同时粉末粒径的均匀性和分布集中程度明显改善;在球磨的后期,粉末粒径又会发生粗化现象。因此,TiH2粉末的高能行星球磨存在一组最佳的工艺参数。高能球磨会改变TiH2粉末的脱氢特征温度,且粉体的D 50越小,特征温度下降幅度越大,与原料粉末相比,最大差值达83℃。对烧结样品的显微组织分析显示,通过由球磨TiH 2粉末所获得的烧结钛合金的晶粒度得到了显著地细化;当采用优化的工艺开展球磨TiH 2粉末制备时,通过压制和真空烧结可获得平均晶粒度在5μm以下的超细晶钛。","authors":[{"authorName":"曹杰义","id":"97572e87-d8e2-4051-afb4-0d4c76c0c0e8","originalAuthorName":"曹杰义"},{"authorName":"肖平安","id":"c40f1d02-56e4-49ca-b927-ec6280c08b71","originalAuthorName":"肖平安"},{"authorName":"雷豹","id":"f0c594db-d600-49e3-915f-918c91923ff6","originalAuthorName":"雷豹"},{"authorName":"张小虎","id":"45759a81-ab3e-4a33-8410-a5198dcc672b","originalAuthorName":"张小虎"},{"authorName":"范安平","id":"669adcff-315c-4f50-9f48-e45260f2fa16","originalAuthorName":"范安平"},{"authorName":"轩翠华","id":"2c2b5703-2b79-47ba-a4f6-2e8bea56a25b","originalAuthorName":"轩翠华"}],"doi":"","fpage":"2825","id":"b70c66c5-608d-450a-a1ca-b6586228e949","issue":"10","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"a2885728-d484-462f-8434-bc01610c0485","keyword":"TiH2","originalKeyword":"TiH2"},{"id":"6733824e-7b13-404c-8258-dd5c62bde902","keyword":"行星球磨","originalKeyword":"行星球磨"},{"id":"1cdc6e7f-fdbf-4730-85f0-fd6381736413","keyword":"粉末粒度","originalKeyword":"粉末粒度"},{"id":"2f462395-b172-4a91-9619-16d606b7a221","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"bd8c5ed9-cad7-4ccd-b295-962aed667123","keyword":"晶粒度","originalKeyword":"晶粒度"}],"language":"zh","publisherId":"zgysjsxb201310013","title":"TiH2粉末的高能行星球磨及超细晶钛烧结","volume":"","year":"2013"},{"abstractinfo":"搅拌桨转速在800/1 000 r/min下,对多壁碳纳米管(MWCNTs)进行湿式球磨0.5和1.0h.通过激光粒度仪、XRD、TEM、Raman光谱和TG-DTA,分别对球磨后MWCNTs的结构形貌、断裂机理和缺陷进行分析.结果表明,湿式球磨0.5和1h,可以快速切断MWCNTs得到U字形端口的MWCNTs,并且其主体结构没有被破坏;相比原始MWCNTs的无定形碳含量分别增加了2.2%和1.8%.MWCNTs湿式球磨断裂机理为高速碰撞的磨球产生巨大的压强作用在MWCNTs表面使其发生轴压屈曲形变,表现为凹陷、弯曲、扭结和断裂等.微观解释为,MWCNTs受到外加压强超过极限压强时,通过改变C-C键夹角释放部分能量来保持整个体系能量的平衡.","authors":[{"authorName":"张文忠","id":"88487165-1708-49c3-8155-3414d29635a3","originalAuthorName":"张文忠"},{"authorName":"蔡晓兰","id":"3017cd1b-9e94-4507-9600-f6785179caeb","originalAuthorName":"蔡晓兰"},{"authorName":"胡翠","id":"c627a862-75ea-40f5-ba55-2ef82e536977","originalAuthorName":"胡翠"},{"authorName":"周蕾","id":"c88342e5-2170-43a4-993e-e8cf646162b2","originalAuthorName":"周蕾"},{"authorName":"王子阳","id":"d061889c-571a-4191-a2f2-b8d1ec95a0a5","originalAuthorName":"王子阳"},{"authorName":"彭刚","id":"fb1e3f4e-f7e9-43cc-8468-77e31b929a33","originalAuthorName":"彭刚"},{"authorName":"郭鲤","id":"9469fcf5-212b-4da6-afc9-9e3cc628a30b","originalAuthorName":"郭鲤"},{"authorName":"朱伟","id":"2f60c3f1-4e71-4a77-99fa-18d363bc0ec7","originalAuthorName":"朱伟"}],"doi":"10.3969/j.issn.1001-9731.2016.01.033","fpage":"1163","id":"3d3daa72-269c-4b44-91bd-7a46836e2a6d","issue":"1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"8f511ee2-9e3c-44fb-93f3-46dd809372b3","keyword":"多壁碳纳米管","originalKeyword":"多壁碳纳米管"},{"id":"ddf44937-0ebc-4128-9df4-270982513876","keyword":"湿式球磨","originalKeyword":"湿式球磨"},{"id":"e2824d80-2144-48f7-bfdd-5ca6445d1b60","keyword":"断裂机理","originalKeyword":"断裂机理"},{"id":"be09efe1-618a-4921-ad7b-bd21a4e8017a","keyword":"缺陷","originalKeyword":"缺陷"}],"language":"zh","publisherId":"gncl201601033","title":"湿式球磨多壁碳纳米管断裂机理及缺陷分析","volume":"47","year":"2016"},{"abstractinfo":"采用搅拌式高能球磨机研究了不同铝含量的Al/CuO球磨固态燃烧反应和Al-Cu及Al-Cu-Al2O3扩散型反应.结果表明:理想配比的Al/CuO的反应孕育期最短,偏离这一配比,孕育期延长,反应由整体燃烧式逐渐过渡到渐进燃烧式完成;球磨强度扩大以燃烧式进行的组元配比范围;当铝含量超过理想配比中的比例,随Al含量增加,反应由单一的还原反应向还原+合成复合反应模式转化,反应产物为平衡组织,依次为Cu+Al2O3、Cu9Al4+Al2O3、CuAl2+Al2O3、Al(Cu)+Al2O3;而球磨Al-Cu和Al-Cu-Al2O3体系的反应以扩散方式进行,产物是非平衡组织.","authors":[{"authorName":"马明亮","id":"975b6c90-8051-4bb3-9259-3d9b4069c1f8","originalAuthorName":"马明亮"},{"authorName":"郑修麟","id":"c0acd715-c4ce-41c8-abc6-70c677ce567e","originalAuthorName":"郑修麟"},{"authorName":"刘新宽","id":"de0a38ae-08c3-4d05-adf4-6777d23ba08f","originalAuthorName":"刘新宽"},{"authorName":"席生岐","id":"aa2344b7-3b66-428a-8a57-1e3fa35bf685","originalAuthorName":"席生岐"},{"authorName":"柴东朗","id":"af83ae1e-c706-465c-8da6-a9c3abf6d73c","originalAuthorName":"柴东朗"},{"authorName":"周敬恩","id":"02931d6e-23b0-45a8-97c1-2d702faa95e7","originalAuthorName":"周敬恩"}],"doi":"10.3969/j.issn.1005-0299.2001.04.010","fpage":"375","id":"ba0b05b2-91fc-4b87-a19a-0976e4c05da8","issue":"4","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"18d79ad2-2576-46aa-a0b6-221ea19aa158","keyword":"高能球磨","originalKeyword":"高能球磨"},{"id":"081923c2-1ccf-4220-a249-861628272c04","keyword":"固态还原燃烧反应","originalKeyword":"固态还原燃烧反应"},{"id":"eb33d74a-0078-4c52-8261-1c5c3b869c2e","keyword":"扩散型反应","originalKeyword":"扩散型反应"}],"language":"zh","publisherId":"clkxygy200104010","title":"组元配比对球磨固态燃烧式反应和扩散型反应的影响","volume":"9","year":"2001"},{"abstractinfo":"本文对卧式行星磨中研磨体级配对水泥熟料的破碎速率和初始破碎分布函数进行研究,实验所用研磨体级配为φ20:φ16:φ12 =2:5:3、φ20:φ16:φ12=1:6:3、φ16:φ12:φ10 =5:3:2、φ16:φ12:φ10 =5:4:1、φ16:φ10 =5:5和φ16:φ10 =3:7,物料为2.36~3.35 mm粒级的水泥熟料.研究表明:不同级配的研磨体对水泥熟料的粉磨遵循一级粉磨动力学方程.总体而言,破碎速率Si随研磨体中大尺寸钢球所占比例的增大而提高;初步研究认为研磨体的级配对初始破碎分布参数有一定的影响,同一粒级水泥熟料的γ值波动较小,φ值和β值在研磨体级配为φ16:φ10=3:7时达到最大值.","authors":[{"authorName":"张柏林","id":"80176dbc-4b5d-487a-99ce-7d7d9e52c24f","originalAuthorName":"张柏林"},{"authorName":"钱海燕","id":"708279ee-d588-42ee-bbe4-21d806b4c36c","originalAuthorName":"钱海燕"},{"authorName":"敖林","id":"a57af950-946a-4605-b781-ac6a8906f7b9","originalAuthorName":"敖林"}],"doi":"","fpage":"930","id":"698d7f1f-b3c4-444d-8d26-60498b0035cb","issue":"4","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"b123b812-8a26-4b02-8c94-c7230d70e092","keyword":"粉磨动力学","originalKeyword":"粉磨动力学"},{"id":"8b586abb-2b66-4198-866b-3beaba5eacba","keyword":"研磨体级配","originalKeyword":"研磨体级配"},{"id":"7b389a69-3d8b-41b8-9862-395cb3924ff4","keyword":"破碎速率","originalKeyword":"破碎速率"},{"id":"eca19f61-a8e1-49e2-b323-043fae925f20","keyword":"初始破碎分布函数","originalKeyword":"初始破碎分布函数"}],"language":"zh","publisherId":"gsytb201104037","title":"行星磨中研磨体级配对水泥熟料破碎效率的影响","volume":"30","year":"2011"},{"abstractinfo":"基于有限体积方法,对嵌入式行星单螺杆熔体输送段流场进行三维等温数值模拟。通过简化的物理模型来模拟行星螺杆复杂的几何结构,使用用户自定义程序设定了行星螺杆运动的边界条件。通过对嵌入式行星螺杆挤出机内螺槽压力、速度、形变速率张量、拉伸强度的分析,表明行星螺杆速度都有周期性的波动,嵌入式行星螺杆平均形变速率更高并且伴有强的拉伸场作用。通过停留时间分布曲线分析,嵌入式行星螺杆内物料停留时间分布曲线较普通单螺杆更窄,同等转速下产量更高。","authors":[{"authorName":"王小龙","id":"4aafbf28-eecc-4fd3-bd58-d8976fb54f83","originalAuthorName":"王小龙"},{"authorName":"徐百平","id":"ef1ea86a-3943-4cdb-883e-2adf94bf7da5","originalAuthorName":"徐百平"},{"authorName":"刘跃军","id":"762007d4-c350-43db-99fe-7aa4900b709c","originalAuthorName":"刘跃军"},{"authorName":"王玫瑰","id":"1fac70c2-b0b1-4804-aa52-06d7c7ff9232","originalAuthorName":"王玫瑰"},{"authorName":"喻慧文","id":"bcbcb971-f402-40e7-8e10-cc5db51a8e4b","originalAuthorName":"喻慧文"}],"doi":"","fpage":"171","id":"093df95e-dba5-4df1-869d-c42e9e918226","issue":"7","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"58f22224-0f55-4b89-bc1f-c92a221ab90b","keyword":"数值模拟","originalKeyword":"数值模拟"},{"id":"aad88b0d-d246-4cc6-a220-a4caa3d72f36","keyword":"Fluent计算","originalKeyword":"Fluent计算"},{"id":"0908bca3-fe3c-4da8-9091-704d5af3d989","keyword":"混沌混合","originalKeyword":"混沌混合"},{"id":"b5fb20b4-74bb-4b91-a547-186ba8d753a6","keyword":"挤出特性","originalKeyword":"挤出特性"}],"language":"zh","publisherId":"gfzclkxygc201207044","title":"嵌入式行星螺杆挤出机内三维流动数值模拟","volume":"28","year":"2012"},{"abstractinfo":"针对3英寸SiC衬底的精密抛光加工,设计了其无架行星式适应性双面抛光机构的几何模型.推导了抛光垫上任一点磨粒 A 相对 SiC 衬底的运动轨迹方程.利用C#和Matlab 联合仿真对太阳轮、行星轮、齿圈以及抛光盘转速和运动轨迹的曲率等工艺参数进行了分析.基于 ADAMS 工具,进行了双面抛光的运动学仿真,得到了3英寸 SiC 衬底表面5点的位移、速度、加速度随时间变化的曲线.仿真结果表明,当齿圈和太阳轮转速比m=-1.25;抛光盘和太阳轮转速比n=1;磨粒分布半径(RA )适当增加时,磨粒在晶片上走过的轨迹范围增大;得到的抛光轨迹更加均匀.根据仿真的最优参数进行实验,机械抛光后获得了材料去除率(MRR)为1~2μm/h,表面粗糙度(Ra )小于2 nm,总厚度变化(TTV)、弯曲度(BOW)、翘曲度(Warp)均小于15μm 的 SiC 衬底.验证了理论模型的正确性和虚拟样机的合理性.","authors":[{"authorName":"张鹏","id":"2f65718b-9a9b-4214-baa3-7bd618a7d8b3","originalAuthorName":"张鹏"},{"authorName":"冯显英","id":"72f96973-5004-4c7a-a9fd-37af08c423cb","originalAuthorName":"冯显英"},{"authorName":"杨静芳","id":"482e8652-c524-4b04-9ec8-326e65dad834","originalAuthorName":"杨静芳"}],"doi":"10.3969/j.issn.1001-9731.2015.18.022","fpage":"18105","id":"2b7d8067-dfe4-433e-9d9f-a36839271423","issue":"18","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"76b3defa-1a88-4747-b6df-3cdb5177bce1","keyword":"行星差动轮系","originalKeyword":"行星差动轮系"},{"id":"ed7860e0-4983-4c39-bd84-f994fdeb8601","keyword":"抛光轨迹","originalKeyword":"抛光轨迹"},{"id":"32f6a10b-3742-44b4-ba29-2756a3df1eef","keyword":"ADAMS","originalKeyword":"ADAMS"},{"id":"a0c4568a-fa5e-4b18-b4af-ac22e70793cd","keyword":"3英寸碳化硅衬底","originalKeyword":"3英寸碳化硅衬底"}],"language":"zh","publisherId":"gncl201518022","title":"3英寸SiC衬底无架行星式双面抛光运动学分析?","volume":"","year":"2015"},{"abstractinfo":"采用行星式高能球磨机对三氧化二铁粉末进行细化球磨,并对不同球磨时间的样品使用XRD和TEM、SEM进行观测,结果发现随球磨时间延长氧化铁颗粒不断细化,但在72h后继续增加球磨时间,并不能使颗粒粒径进一步明显变小.同时在球磨过程中出现了一部分Fe2O3向Fe3O4的转变.","authors":[{"authorName":"戴瑞光","id":"52530808-e323-45ef-85ae-f271236ce663","originalAuthorName":"戴瑞光"},{"authorName":"王兴庆","id":"5bf87972-4de9-495d-befd-08d43af1037d","originalAuthorName":"王兴庆"},{"authorName":"韩义林","id":"41e168d6-365a-4437-8e84-ce2949690b96","originalAuthorName":"韩义林"},{"authorName":"李永","id":"12378be8-8bbe-4cbe-92f4-067ef2f2c7d8","originalAuthorName":"李永"}],"doi":"10.3969/j.issn.1001-7208.2009.05.007","fpage":"34","id":"59bf36e4-2dca-4857-9567-ee05df8c0756","issue":"5","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"5e5463ec-5b7c-4321-b72f-49784adb27e7","keyword":"氧化铁粉","originalKeyword":"氧化铁粉"},{"id":"d6978868-f146-40f1-8dc5-69deedfe7013","keyword":"高能球磨","originalKeyword":"高能球磨"},{"id":"547a82bb-ed03-4db7-a264-523837708648","keyword":"粉末粒径","originalKeyword":"粉末粒径"}],"language":"zh","publisherId":"shjs200905007","title":"高能球磨对Fe2O3粉末形貌和成分的影响","volume":"31","year":"2009"}],"totalpage":1415,"totalrecord":14148}