魏娜娜
,
韦奇
,
李振杰
,
李群艳
,
聂祚仁
无机材料学报
doi:10.3724/SP.J.1077.2010.01047
以正硅酸乙酯和硝酸铜为前驱体, 通过溶胶-凝胶法制备了铜掺杂的二氧化硅膜, 通过FT-IR、XPS、XRD等测试方法研究了铜元素在膜材料中的存在形态, 并利用N2吸附对膜材料的孔结构进行表征, 讨论了铜掺杂量以及水/正硅酸乙酯的化学计量比对膜材料孔结构的影响, 最后初步研究了铜掺杂二氧化硅膜在水热环境下的孔结构稳定性. 结果表明, 当n(H2O):n(TEOS)= 0.5:1.0时能获得微孔结构, 铜掺杂后的二氧化硅膜仍然保持良好的微孔结构,当n(Cu):n(Si)=0.8:1.0时膜材料的孔容达到0.155 cm3/g, 孔径狭窄分布在0.5nm. 铜元素除了进入二氧化硅骨架外主要以晶态Cu单质和Cu2O存在. 铜掺杂的膜材料在水热环境下短期内能保持微孔结构, 但长期的水热环境导致膜材料孔结构的崩溃.
关键词:
二氧化硅膜
,
copper-doped
,
pore structure
,
Sol-Gel process
魏娜娜
,
韦奇
,
李振杰
,
李群艳
,
聂祚仁
无机材料学报
doi:10.3724/SP.J.1077.2010.01047
以正硅酸乙酯和硝酸铜为前驱体,通过溶胶-凝胶法制备了铜掺杂的二氧化硅膜,通过FT-IR、XPS、XRD等测试方法研究了铜元素在膜材料中的存在形态,并利用N2吸附对膜材料的孔结构进行表征,讨论了铜掺杂量以及水/正硅酸乙酯的化学计量比对膜材料孔结构的影响,最后初步研究了铜掺杂二氧化硅膜在水热环境下的孔结构稳定性.结果表明,当n(H2O):n(TEOS)=0.5:1.0时能获得微孔结构,铜掺杂后的二二氧化硅膜仍然保持良好的微孔结构,当n(Cu):n(Si)=0.8:1.0时膜材料的孔容达到0.155 cm3/g,孔径狭窄分布在0.5nm.铜元素除了进入二氧化硅骨架外主要以晶态Cu单质和Cu2O存在.铜掺杂的膜材料在水热环境下短期内能保持微孔结构,但长期的水热环境导致膜材料孔结构的崩溃.
关键词:
二氧化硅膜
,
铜掺杂
,
孔结构
,
溶胶-凝胶法