Lugui CHEN
,
Yong LING
,
Xiuhong KANG
,
Lijun XIA
,
Dianzhong LI
材料科学技术(英文)
A large-scale, thin wall duplex stainless steel impeller with complex geometry was deformed severely and unpredictably during casting and heat treatment processes resulted in dimensional failure for the final part. In this paper, the distortion of the impeller during casting and heat treatment was calculated. A commercial software, Experto-ViewCast, was used to simulate the transient heat transfer, solidification and mechanical behaviors during the casting and the heat treatment process. The coupled set of governing differential equations for mass, energy and mechanical balance were solved by finite control volume and finite element method. A thermoelastic-visco-plastic rheological model was used to compute the constrained shrinkage of the casting. At each time increment, a coupling of the heat transfer and mechanics was performed. Comparison of the experimental measurements with the model predictions showed good agreement. From the calculated displacements of key points of the blade, the proper inverse displacements were determined to provide an optimum casting pattern and to achieve a uniform and reasonable machining allowance for both faces of the blade.
关键词:
Numerical simulation
,
null
,
null
,
null
,
null
Chengjiang HUANG
,
Dianzhong LI
,
Changrong CHEN
,
Yiyi LI
材料科学技术(英文)
A finite element formulation which derives constitutive response from crystal plasticity theory was used to examine localized deformation in fee polycrystals. The polycrystal model was an idealized planar array of 22 hexagonal grains. The constitutive description used is based on a finite strain kinematical theory that accounts for lattice rotations. Formation of shear bands was successfully modeled in both single crystal and polycrystals. Stress and strain distribution around triple junctions was also analyzed. Results show the distributions of stresses and strains are distinctly inhomogeneous. Stress and strain fields across grain boundaries are highly discontinuous. However, this discontinuity will be restrained when shear bands are fully developed.
关键词:
Xiaochun SHA
,
Chunli MO
,
Dianzhong LI
,
Yiyi LI
材料科学技术(英文)
Based on hot rolling production line of strip steel, the off-line in-house software, termed as ROLLAN (Rolling Analysis), is developed. The code is mainly used to predict the evolution of temperature, rolling force, fraction and grain size of recrystallization, fraction and grain size of phase transformation and final mechanical properties. Almost all the processing parameters affecting microstructure and mechanical properties in the schedule from reheating to the coiling process are considered in detail. Self-learning coefficient is adopted to adjust the deviation between predicted and measured temperatures, such as roughing exit temperature (RT2), finishing exit temperature (FT7) and coiling temperature (CT). Due to the application of low-speed-threading, increasing-speed-rolling and decreasing-speed-delivery process during finishing rolling and different cooling condition, after coiling the thermal-mechanical history of different position, along strip longitudinal direction is different resulting in inhomogeneous mechanical properties. So the segments are divided along longitudinal direction to identify the variation of microstructure and mechanical properties. An example of plain carbon strip steel Q235 with various thickness is used to compare the calculated mechanical properties with measured ones. For the specific grade of Q235 , the maximum deviation of tensile strength is less than 10.3 MPa, the yield strength is less than 13.2 MPa, and elongation is less than 1.99%. Further work will focus on the on-line application and consider the effect of macrosegregation and sulfur content of cast slab.
关键词:
Microstructural evolution
,
null
,
null
,
null
Yutuo ZHANG
,
Chunli MO
,
Dianzhong LI
,
Yiyi LI
材料科学技术(英文)
A model based on Avrami equation and Scheil’s additivity rule was proposed to simulate the phase transformation in plain carbon steels during continuous cooling in hot strip mill. In this model, a wide range of composition, cooling rate, primary austenite grain size and retained strain has been taken into account. It can be used to calculate the phase fraction transformed at different temperatures during continuous cooling. The phase equilibrium and transformation starting temperature can be determined by using Thermo-Calc and DICTRA. The simulated results containing the transformation at starting and finishing temperatures, Ae1 ,Ae3 and the maximum volume fraction for Q235B, were obtained. The calculated phase volume fractions are in good agreement with the experimental results.
关键词:
Phase transformation
,
null
,
null