Minh-Quy LE
,
Seock-Sam KIM
材料科学技术(英文)
Finite element analysis was carried out to investigate the conical indentation response of elastic-plastic solids within the framework of the hydrostatic pressure dependence and the power law strain hardening. A large number of 40 different combinations of elasto-plastic properties with n ranging from 0 to 0.5 and σy/E ranging from 0.0014 to 0.03 were used in the computations. The loading curvature C and the average contact pressure pave were considered within the concept of representative strains and the dimensional analysis. Dimensionless functions associated with these two parameters were formulated for each studied value of the pressure sensitivity. The results for pressure sensitive materials lie between those for Von Mises materials and the elastic model.
关键词:
Finite element analysis
,
null
,
null
,
null
Minh-Quy LE
,
Seock-Sam KIM
材料科学技术(英文)
Spherical indentation of ceramic coatings with metallic interlayer was performed by means of axisymmetric finite element analysis (FEA). Two typical ceramic coatings with relatively high and low elastic modulus deposited on aluminum alloy and carbon steel were considered. Various combinations of indenter radius-coating thickness ratios and interlayer thickness-coating thickness ratios were used in the modeling. The effects of the interlayer, the coating and the substrate on the indentation behavior, such as the radial stress distribution along the coating surface as well as the coating interface, and the plastic deformation zone evolution in the substrate were investigated in connection with the above mentioned ratios. The coating cracking dominant modes were also discussed within the context of the peak tensile stresses on the coating surface and on the coating interface.
关键词:
Finite element analysis
,
null
,
null
,
null
Thuong-Hien LE
,
Young-Hun
,
Seock-Sam KIM
材料科学技术(英文)
The sliding wear behaviors of ZrO2-22 wt pct MgO (MZ) and ZrO2-8 wt pct Y2O3 (YZ) coatings deposited on a cast aluminum alloy with bond layer (NiCrCoAlY) by plasma spray were investigated under dry test conditions at room temperature. Under all load conditions, the wear mechanisms of the MZ and YZ coatings were almost the same. The material transfer and pullout were involved in the wear process of the studied coatings under the test conditions. The wear rate of the MZ coating was less than that of the YZ coating. While increasing the normal load, the wear rates of the MZ and YZ coatings increased. SEM was used to examine the worn surfaces and to elucidate likely wear mechanisms. Energy dispersive X-ray spectroscopy (EDX) analysis of the worn surfaces indicated that material transfer occurred in the direction from the SiC ball to the disk. Fracture toughness had a significant influence on the wear performance of the coatings. It was suggested that the material transfer played an important role in the wear behavior.
关键词:
Plasma spray
,
null
,
null
,
null