CHU Mansheng
,
GUO Xianzhen
,
SHEN Fengman
,
YAGI Junichiro
,
NOGAMI Hiroshi
钢铁研究学报(英文版)
The reducibility of ironbearing burdens was emphasized for improving the operation efficiency of blast furnace. The blast furnace operation of charging the burdens with high reducibility has been numerically evaluated using a multifluid blast furnace model. The effects of reaction rate constants and diffusion coefficients were investigated separately or simultaneously for clarifying the variations of furnace state. According to the model simulation results, in the upper zone, the indirect reduction of the burdens proceeds at a faster rate and the shaft efficiency is enhanced with the improvement under the conditions of interface reaction and intraparticle diffusion. In the lower zone, direct reduction in molten slag is restrained. As a consequence, CO utilization of top gas is enhanced and the ratio of direct reduction is decreased. It is possible to achieve higher energy efficiency of the blast furnace, and this is represented by the improvement in productivity and the decrease in consumption of reducing agent. The use of highreducibility burdens contributes to a better performance of blast furnace. More efforts are necessary to develop and apply highreducibility sinter and carbon composite agglomerates for practical application at a blast furnace.
关键词:
ironbearing burden;reducibility;multifluid model;3interface shrinking core model