{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"介绍了当前测量薄/厚压电参数的2大类方法:直接测量法(包括Berlincourt法、圆片弯曲技术、激光干涉法、扫描激光多普勒振动法、原子力显微镜法)和间接测量法(包括体声波响应和表面声波响应法、复合谐振法).详细分析了这些方法的基本原理、测试表征、应用状况和存在的问题,比较了这些方法的优缺点.结果表明,高分辨率的双束激光干涉和表面扫描振动相结合的方法将是评估压电参数方便、准确和可靠的方法,有望成为将来表征薄/厚膜压电特性的标准方法.","authors":[{"authorName":"王青萍","id":"16e44dfd-6ece-4036-b1ec-085468fbed62","originalAuthorName":"王青萍"},{"authorName":"姜胜林","id":"65f334b2-6d21-4c2e-97b9-b7107842a181","originalAuthorName":"姜胜林"},{"authorName":"熊龙宇","id":"11ee5a31-c5d7-4da8-ab70-07910bb2f874","originalAuthorName":"熊龙宇"},{"authorName":"曾亦可","id":"6589f15f-e622-4605-9706-8f54cb45f8d4","originalAuthorName":"曾亦可"}],"doi":"","fpage":"96","id":"53c6293c-95a0-4048-a5ed-b45b8be943c3","issue":"21","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"a15f9f61-7387-464b-affe-a8ddf907a40a","keyword":"薄/厚膜","originalKeyword":"薄/厚膜"},{"id":"158dcbe4-fee2-4c6d-ae30-88a73ddc4d21","keyword":"压电参数","originalKeyword":"压电参数"},{"id":"d51086ed-93d4-48ab-8970-4161ae1b1a5c","keyword":"测量方法","originalKeyword":"测量方法"}],"language":"zh","publisherId":"cldb200921022","title":"薄/厚膜压电参数测量方法的研究进展","volume":"23","year":"2009"},{"abstractinfo":"针对压电材料检测参数精确表征和高效检测问题,建立了频谱分析压电材料响应信号可拓检测体系,为压电材料的需求参数有效而准确的检测开辟了新方法。基于压电材料特有的滤波特性,频谱分析压电材料的可拓检测信号,使其频谱得以最适度展开。根据所展开的频谱图,有效而准确地检测出压电材料样品的特征谐振阻抗及其它需求参数。使得压电材料的特征谐振阻抗检测更为直观,其检测结果准确。且对多信号特征融合激励压电材料参数检测体系试作一般性探讨。","authors":[{"authorName":"鲍永生","id":"3a1b0a8d-4069-4889-bfbb-87978d8c5919","originalAuthorName":"鲍永生"},{"authorName":"卢荣德","id":"837a53b9-ffeb-4b6b-9d66-d0b63359c06c","originalAuthorName":"卢荣德"},{"authorName":"郝绿原","id":"e5d1d1fb-7850-48e1-bad1-570121d88498","originalAuthorName":"郝绿原"}],"doi":"10.3969/j.issn.1001-9731.2013.24.022","fpage":"3622","id":"8e069651-8408-4b91-804c-f3388cb6622c","issue":"24","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"3007046b-17eb-490e-96e4-ec5ae323832e","keyword":"压电材料参数","originalKeyword":"压电材料参数"},{"id":"b2c9ce67-accf-47f2-9a12-05a781baf019","keyword":"滤波特性","originalKeyword":"滤波特性"},{"id":"124c1831-80e2-4651-a226-70ccb3447db0","keyword":"频谱分析","originalKeyword":"频谱分析"},{"id":"3067ea40-0db7-468a-aa78-9b6bcd148f03","keyword":"可拓检测","originalKeyword":"可拓检测"}],"language":"zh","publisherId":"gncl201324022","title":"频谱分析压电材料参数的可拓检测","volume":"","year":"2013"},{"abstractinfo":"压电驱动器是一种由压电功能材料构成的微型机电器件,为研究改善压电驱动器环形压电振子的振动特性和俘能特性,建立了压电振子的机电耦合有限元模型,分析了压电振子齿槽倾斜度和支撑对其振动特性和俘能特性的影响,并从改善振子振动特性和俘能特性角度出发,对压电振子进行了结构优化设计;其次,利用该有限元模型求解了压电振子的导纳特性曲线,基于导纳特性曲线对压电振子进行了电学参数识别.研究结果有利于压电驱动器的结构优化、驱动控制和阻抗匹配的设计.","authors":[{"authorName":"王光庆","id":"b91a8c53-3d69-48fb-95b3-12b15689e0da","originalAuthorName":"王光庆"},{"authorName":"郭吉丰","id":"99c29339-99a4-464c-b478-f5f63b5c9ad4","originalAuthorName":"郭吉丰"}],"doi":"10.3969/j.issn.1007-4252.2011.04.005","fpage":"359","id":"67966f52-406d-4418-bc9c-2bc97f279c13","issue":"4","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"bdb5cb69-89ee-47cc-9161-9049c49a9b61","keyword":"压电振子","originalKeyword":"压电振子"},{"id":"12f8eb1c-3d04-49c0-9ca3-3cf013dd2217","keyword":"有限元","originalKeyword":"有限元"},{"id":"86a3c79e-8fbf-4b2b-9538-cb9b84f599ea","keyword":"动态特性","originalKeyword":"动态特性"},{"id":"ae3c47b0-460a-40ad-b255-6062fc1503ca","keyword":"导纳特性","originalKeyword":"导纳特性"},{"id":"305eb892-4bb1-48fe-b50d-4ea6f479c98f","keyword":"参数识别","originalKeyword":"参数识别"}],"language":"zh","publisherId":"gnclyqjxb201104005","title":"压电驱动器环形压电振子特性及其等效电学参数识别","volume":"17","year":"2011"},{"abstractinfo":"针对压电材料精确表征问题,本文提出了一种包含材料损耗特性,基于模拟退火(Simulated Annealing,SA)优化算法的压电材料新型表征方法.并采用提出的新型表征方法对厚度振动模式下的高损耗偏铌酸铅压电陶瓷和l-3型压电复合材料样品的材料特性进行了研究,样品电子阻抗共振特性的理论优化结果与实际测量值准确拟合,表明该方法能够精确表征具有损耗特性压电材料参数.","authors":[{"authorName":"董洋洋","id":"9a571d4b-68ae-4caf-ac80-b854c876209f","originalAuthorName":"董洋洋"},{"authorName":"吴正斌","id":"3e6e3850-a8e8-447c-a256-5c6f7efcbbb0","originalAuthorName":"吴正斌"},{"authorName":"胡泓","id":"a8db1d81-bc48-4f32-afc3-4c4fd7f58e16","originalAuthorName":"胡泓"},{"authorName":"徐国卿","id":"3f5b8492-cc05-49c7-9ca7-e80e2857efe9","originalAuthorName":"徐国卿"},{"authorName":"吕延平","id":"7179bc81-ae48-4082-9bf4-e554bb350017","originalAuthorName":"吕延平"},{"authorName":"王君君","id":"d3397b3e-4130-4abb-acf9-556b83006a6f","originalAuthorName":"王君君"},{"authorName":"吴波","id":"bed7b2c2-a357-4b08-961c-b5f88bdeae98","originalAuthorName":"吴波"}],"doi":"10.3969/j.issn.1007-4252.2011.01.016","fpage":"93","id":"b4c13188-143b-401e-a976-925fd20213f7","issue":"1","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"9655b99a-fdee-4edd-a842-bf05f98d4a6b","keyword":"压电材料","originalKeyword":"压电材料"},{"id":"cccb63b2-5045-4592-a2df-594c53ba6f12","keyword":"模拟退火","originalKeyword":"模拟退火"},{"id":"97249339-7b03-4cf8-bbd5-89f791f7e1d8","keyword":"材料参数表征","originalKeyword":"材料参数表征"},{"id":"19ab9c0d-3f58-425c-8a12-7c7c3a04b9fe","keyword":"损耗特性","originalKeyword":"损耗特性"}],"language":"zh","publisherId":"gnclyqjxb201101016","title":"一种新型的压电材料参数的精确表征方法","volume":"17","year":"2011"},{"abstractinfo":"低电压电磁铆接设备固有参数对铆接力的影响规律尚不清晰,制约了该技术的应用,采用仿真方法系统分析了低电压电磁铆接设备固有参数对铆接时放电电流、电容电压的影响规律,并以放电电流变化为依据,将设备工作状态划分为两类,理论分析表明设备工作于振荡阻尼态时具有较好的铆接性能,通过调节铆枪电感,使设备工作于不同工作状态,对Φ6 mm的2A16铆钉进行铆接试验,铆钉变形量验证了理论分析,据此,提出要综合控制放电回路固有参数,使其达到匹配,保证设备工作于振荡阻尼状态,应作为设备设计的一个重要指导原则.","authors":[{"authorName":"赵志衡","id":"395fd088-4118-4910-bf34-ae6dc7080f74","originalAuthorName":"赵志衡"},{"authorName":"江洪伟","id":"1a1765b5-2559-4463-b22b-2416935ce975","originalAuthorName":"江洪伟"},{"authorName":"邓将华","id":"06b02e4c-67f3-448b-8417-697448ed7a5c","originalAuthorName":"邓将华"},{"authorName":"蔡梅","id":"241de4ad-0037-4cb5-a642-d6b2b2e67112","originalAuthorName":"蔡梅"},{"authorName":"李春峰","id":"ba72830c-267c-4193-b937-5eaf74808cab","originalAuthorName":"李春峰"}],"doi":"","fpage":"244","id":"d6d8e2b6-4732-4e3c-a408-6c5a56a5dbf9","issue":"2","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"e76629ed-ff98-4cda-b6c0-dc2cb5226949","keyword":"低电压","originalKeyword":"低电压"},{"id":"6d216d00-8214-4135-82d1-9bf17ffcde87","keyword":"电磁铆接","originalKeyword":"电磁铆接"},{"id":"2505b544-d8f5-4f30-b802-e0ea7bd77313","keyword":"固有参数","originalKeyword":"固有参数"}],"language":"zh","publisherId":"clkxygy200902024","title":"低压电磁铆接固有参数对铆接性能的影响","volume":"17","year":"2009"},{"abstractinfo":"采用有限元方法对1-3型压电纤维复合材料(Macro-fiber composites,MFC)建立微机电模型,讨论了交叉指形电极关键尺寸、两相结构尺寸对驱动性能的影响.结果表明:分支电极中心距P一定时,取较大的分支电极宽度w可得到较大的自由应变和夹持应力;当分支电极宽度w不变时,随p/w的增加,自由应变增加而夹持应力减小;采用交叉指形电极结构可使1-3型压电纤维复合材料具有较高的横观各向异性,横向效应系数可提高2.3倍.较小的聚合物层厚度a、纤维截面尺寸c有助于提高压电纤维复合材料的驱动性能,较小的纤维间聚合物宽度b有助于提高压电纤维复合材料的自由应变,但夹持应力则相应降低.","authors":[{"authorName":"李允","id":"b8ad14b2-a875-489a-9979-751d2099246c","originalAuthorName":"李允"},{"authorName":"沈星","id":"579cf11b-4bf0-418a-ba94-1bb42ce5383e","originalAuthorName":"沈星"},{"authorName":"王宁","id":"fadce873-24a8-4b35-810d-910a6a4ff4af","originalAuthorName":"王宁"}],"doi":"","fpage":"89","id":"44aeb8be-27e0-4053-93c7-996df00734df","issue":"12","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"8adff46e-4137-4f0a-8068-78d877cad289","keyword":"1-3型压电纤维复合材料","originalKeyword":"1-3型压电纤维复合材料"},{"id":"bfee99e2-95d7-4b7a-8c9d-1e019b793e2e","keyword":"驱动性能","originalKeyword":"驱动性能"},{"id":"228c77e7-d564-47d3-9fcb-5d03307a1ddc","keyword":"有限元方法","originalKeyword":"有限元方法"},{"id":"35b413ee-a4e9-4054-b82e-1b943c22e0b2","keyword":"自由应变","originalKeyword":"自由应变"}],"language":"zh","publisherId":"cldb200812023","title":"1-3型压电纤维复合材料结构参数对驱动性能的影响","volume":"22","year":"2008"},{"abstractinfo":"根据均匀场理论分析3-3型压电复合材料代表体积胞元,通过罚函数方法引入周期性边界条件,建立了3-3型压电复合材料的有限元模型.数值计算结果与已有实验结果基本一致,验证了模型的合理性,并与解析解进行了对比,表明该有限元模型能更精确地描述3-3型复合材料的有效性能常数.用所建模型分析了基体相体积分数、复合材料基体泊松比、弹性模量和复合材料基体分布形状等参数对静水压压电常数值和静水压灵敏值的影响.","authors":[{"authorName":"张红艳","id":"e1c99e2c-a764-4000-b892-183b7f49d95c","originalAuthorName":"张红艳"},{"authorName":"李录贤","id":"9a2f0c52-9194-453d-947b-375aaed80823","originalAuthorName":"李录贤"},{"authorName":"沈亚鹏","id":"3670a29d-3e79-4206-a271-81256fbe33d7","originalAuthorName":"沈亚鹏"}],"doi":"10.3321/j.issn:1000-3851.2005.02.029","fpage":"160","id":"ce9ff51b-5286-429d-a8e1-4ba08323879c","issue":"2","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"97d3e014-88b1-405b-97c6-a119a7dd2b04","keyword":"3-3压电复合材料","originalKeyword":"3-3压电复合材料"},{"id":"6a4e1711-e772-4e75-8b36-3b1a7f6ce4ab","keyword":"均匀场理论","originalKeyword":"均匀场理论"},{"id":"f9765851-1a79-4d61-a27e-d67db91e7694","keyword":"有限元方法","originalKeyword":"有限元方法"},{"id":"a7ae4d64-a993-40fb-a1e7-ec3027c37cd9","keyword":"代表体积元","originalKeyword":"代表体积元"}],"language":"zh","publisherId":"fhclxb200502029","title":"3-3型压电复合材料的有限元模型及材料参数对其性能的影响","volume":"22","year":"2005"},{"abstractinfo":"本文综述了无铅压电陶瓷研究开发的相关进展,着重介绍了钙钛矿结构无铅压电陶瓷(包括BaTiO3(BT)基无铅压电陶瓷、Bi1/2Na1/2TiO3 (BNT)基无铅压电陶瓷、碱金属铌酸盐K1/2Na1/2NbO3(KNN)基无铅压电陶瓷)、钨青铜结构无铅压电陶瓷及铋层状结构无铅压电陶瓷等不同陶瓷种类的相关体系、制备方法及压电铁电性能,并根据相关性能参数分析了无铅压电器件的应用领域,最后对其发展前景进行了展望.","authors":[{"authorName":"赵亚","id":"357c1edd-113f-421e-a7ed-402d2ccf3480","originalAuthorName":"赵亚"},{"authorName":"李全禄","id":"fef2062f-e80f-4b98-b5b3-64b4f9148b02","originalAuthorName":"李全禄"},{"authorName":"王胜利","id":"821cc140-3201-4c7e-b88d-0cc7d438e7de","originalAuthorName":"王胜利"},{"authorName":"秦梅宝","id":"9a0ec027-f47a-471a-862e-267123ac4928","originalAuthorName":"秦梅宝"},{"authorName":"张引红","id":"7ed957fa-5e2b-4df1-815c-7ab393fd0e9d","originalAuthorName":"张引红"}],"doi":"","fpage":"616","id":"629a197f-9ec1-40ca-951d-7bebff40d938","issue":"3","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"3ae5b27d-61ad-4cf5-a4a7-b8302be9b8e4","keyword":"无铅压电陶瓷","originalKeyword":"无铅压电陶瓷"},{"id":"2493cca9-9587-4969-b361-dca3cd1965d9","keyword":"钙钛矿结构","originalKeyword":"钙钛矿结构"},{"id":"55db697e-aedb-4260-9e9c-d6614400114c","keyword":"钨青铜结构","originalKeyword":"钨青铜结构"},{"id":"c6ead769-3d06-4b8e-a638-7cd67cfbab1a","keyword":"铋层状结构","originalKeyword":"铋层状结构"}],"language":"zh","publisherId":"gsytb201003024","title":"无铅压电陶瓷的研究与应用进展","volume":"29","year":"2010"},{"abstractinfo":"压电变压器利用压电陶瓷材料自身的压电和逆压电效应来实现升降压,同传统的电磁变压器相比较,具有体积小、无电磁污染、升压比随工作频率和阻抗变化的特点.本文详细评述了用于压电变压器的铁电陶瓷材料的电畴特性、性能参数和掺杂改性的方法,以及压电变压器的变压原理、一般等效电路图和各种各样的压电变压器,分析了现阶段压电变压器存在的问题,并展望了压电变压器的发展方向. ","authors":[{"authorName":"余厉阳","id":"99dc31c2-7784-4a24-ac56-ab4aae06cfe4","originalAuthorName":"余厉阳"},{"authorName":"王德苗","id":"4302c011-0ea4-4ad9-9d22-60f83f4ea55e","originalAuthorName":"王德苗"},{"authorName":"董树荣","id":"ed63b80c-1772-49fe-9c90-3e367e4f97cf","originalAuthorName":"董树荣"}],"doi":"10.3969/j.issn.1007-4252.2003.03.026","fpage":"355","id":"e8a31cb0-5edf-4c51-bd0c-849fa04347c8","issue":"3","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"817eb1a8-3d55-43d7-a850-415cedb51fef","keyword":"电畴特性","originalKeyword":"电畴特性"},{"id":"1dd0a0a8-34e6-4ea0-9d78-9d9df7f6d83b","keyword":"压电变压器","originalKeyword":"压电变压器"},{"id":"9d774331-5099-4a08-a76a-3968f1630f3f","keyword":"压电陶瓷材料","originalKeyword":"压电陶瓷材料"},{"id":"098bf631-e4da-4dba-82b0-fb771e40f1a0","keyword":"等效电路图","originalKeyword":"等效电路图"}],"language":"zh","publisherId":"gnclyqjxb200303026","title":"压电变压器的研究进展","volume":"9","year":"2003"},{"abstractinfo":"总结讨论了0-3型压电复合材料的一般特点,从理论与实验上研究分析了PZT含量、聚合物类型、陶瓷粉末与极化参数压电系数d33的影响,在一定程度上提供了提高0-3型压电复合材料的压电性能的途径.","authors":[{"authorName":"谢蒙萌","id":"42b64615-d0cc-40e2-ba9f-56253784eb23","originalAuthorName":"谢蒙萌"},{"authorName":"万建国","id":"d46ca5dc-0a25-4e38-83ba-1085374d80c1","originalAuthorName":"万建国"}],"doi":"10.3969/j.issn.1001-4381.2002.01.004","fpage":"12","id":"6cd84710-688e-4caf-92b6-f1e32e38a2ee","issue":"1","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"79056c8b-7951-4017-9a59-3170f07d4e86","keyword":"压电复合材料","originalKeyword":"压电复合材料"},{"id":"7556c004-0a73-44a6-b2a0-29806ae53395","keyword":"压电系数","originalKeyword":"压电系数"},{"id":"97b9cf9c-e28b-45cd-b8d6-bf62b469b611","keyword":"聚合物","originalKeyword":"聚合物"},{"id":"3236bfb3-f9e0-455a-b08e-b87379c3847c","keyword":"陶瓷粉末","originalKeyword":"陶瓷粉末"},{"id":"871620ce-084a-4f33-a6c8-472fa15e5a41","keyword":"极化","originalKeyword":"极化"}],"language":"zh","publisherId":"clgc200201004","title":"0-3型压电复合材料的压电性能研究","volume":"","year":"2002"}],"totalpage":1965,"totalrecord":19641}