Lingyun XU
,
Xiaochun WU
,
Hongbin WANG
材料科学技术(英文)
In order to lower the boriding temperature of hot work steel H13, method of surface mechanical attrition treatment (SMAT), which can make the grain size of the surface reach nano-scale, was used before pack boriding. The growth of the boride layer was studied in a function of boriding temperature and time. By TEM (transmission electron microscopy), SEM (scanning electron microscopy), XRD (x-ray diffraction) and microhardness tests, the grain size, thermal stability of the nano-structured (NS) surface and the thickness, appearance, phases of the surface boride layer were studied. Kinetic of boriding was compared between untreated samples and treated samples. Results showed that after SMAT, the boride layer was thicker and the hardness gradient was smoother. Furthermore, after boriding at a low temperature of 700℃ for 8 h, a boride layer of about 5 μm formed on the NS surface. This layer was toothlike and wedged into the substrate, which made the surface layer combine well with the substrate. The phase of the boride layer was Fe2B. Research on boriding kinetics indicated that the activation energy was decreased for the treated samples.
关键词:
Boriding
,
表面机械研磨处理
,
H13钢
,
渗硼动力学