YANG Jun
,
WANG Xin-hua
,
JIANG Min
,
WANG Wan-jun
钢铁研究学报(英文版)
The influence of calcium treatment on non-metallic inclusions had been studied when control technology of refining top slag in ladle furnace was used in ultra-low oxygen steelmaking. A sufficient amount aluminium was added to experimental heats for final deoxidizing during BOF tapping, and the refining top slag with strong reducibility, high basicity and high Al2O3 in ladle furnace was used to produce ultra-low oxygen steel and the transformation of non-metallic inclusions in molten steel was compared by calcium treatment and no calcium treatment. The results show that the transformation of Al2O3→MgO·Al2O3 spinel→CaO-MgO-Al2O3 complex inclusions has been completed for aluminum deoxidation products and calcium treatment to molten steel is unnecessary when using the control technology of ladle furnace refining top slag to produce ultra-low oxygen steel, and the complex inclusions are liquid at the temperature of steelmaking and easily removable to obtain very high cleanliness steel by flotation. Furthermore, the problems of nozzle clogging in casting operations do not happen and the remaining oxide inclusions in steel are the relatively lower melting point complex inclusions.
关键词:
ultra-low oxygen
,
top slag
,
deoxidization
,
aluminium
,
oxide inclusion
,
calcium treatment
HUANG Fu-xiang
,
WANG Xin-hua
,
WANG Wan-jun
钢铁研究学报(英文版)
The microstructures of austenitic stainless steel strip were studied using color metallographic method and electron probe micro analysis (EPMA). In the cast strips, there are three kinds of solidification structures: fine cellular dendrite in the surface layer, equiaxed grains in the center and fine dendrite between them. The solidification mode in the surface layer is the primary austenite AF mode because of extremely high cooling rate, with the retained ferrite located around the primary cellular austenite. In the fine dendrite zone, the solidification mode of molten stainless steel changes to FA mode and the residual ferrite with fish-bone morphology is located at the core of the dendrite. The retained ferrite of equiaxed grains in the center is located in the center of broken primary ferrite dendrite with vermicular morphology.
关键词:
strip casting
,
solidification microstructure
,
austenitic stainless steel
,
retained ferrite