{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"首次使用五氧化二铌纳米棒作为原料通过水热反应合成出60~150 nm宽、几个微米长的高产率、斜方晶系铌酸钾纳米棒晶体.使用X射线衍射仪(XRD)、扫描电镜(SEM)、透射电镜(TEM)、高分辨透射电镜(HRTEM)、选区电子衍射技术(SAED)对铌酸钾纳米棒晶体的形貌和结构进行了表征.合成的铌酸钾纳米棒表现出二次谐波产生响应,并发射出高效率的纳米二次谐波光线.铌酸钾纳米棒晶体沿着[001]方向生长.合成的铌酸钾纳米棒以其优异的非线性光学性能在纳米光学器件中的应用具有很好的发展前景.","authors":[{"authorName":"曹慧群","id":"ad8567cc-813a-493d-8213-171b82e479d4","originalAuthorName":"曹慧群"},{"authorName":"游诚","id":"cc455624-ec68-4f7d-839e-bea3133a95c0","originalAuthorName":"游诚"},{"authorName":"于杰","id":"0a7a76c7-18c8-4547-9d6a-efde36a0a230","originalAuthorName":"于杰"},{"authorName":"曹博","id":"edd3918b-3ee8-48f6-bba2-7ba1def9b3ae","originalAuthorName":"曹博"},{"authorName":"辛红","id":"96ee2c29-8dbd-4805-81bc-cfb3e2115ecf","originalAuthorName":"辛红"},{"authorName":"于斌","id":"41cc82ed-c817-470a-8cad-5dfaf36b917e","originalAuthorName":"于斌"}],"doi":"","fpage":"1391","id":"70a1fa1e-f1f6-4467-8ae4-9cc5f96c9525","issue":"6","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"af2691a4-2b71-4abd-bf94-e431ad913db3","keyword":"铌酸钾","originalKeyword":"铌酸钾"},{"id":"867000cf-bcd1-47f3-9176-1943a9846f64","keyword":"纳米线","originalKeyword":"纳米线"},{"id":"30cb2db7-0d3c-4874-a4ac-5d54388c1e60","keyword":"水热法","originalKeyword":"水热法"},{"id":"b80ff924-9cf6-44b9-928e-bc5586a4626d","keyword":"二次谐波产生","originalKeyword":"二次谐波产生"}],"language":"zh","publisherId":"xyjsclygc201606005","title":"牺牲模板法制备铌酸钾纳米棒单晶及其二次谐波产生","volume":"45","year":"2016"},{"abstractinfo":"以Nb2O5、K2CO3、HF和(NH4)2C2O4为原料,以柠檬酸为配位剂,乙二醇为酯化剂,用氨水调节溶液的pH值,首先将Nb2O5在水浴条件下溶于HF,加入(NH4)2C2O4和氨水获得沉淀物,而后用柠檬酸溶解获得Nb-柠檬酸溶液.K2CO3与Nb-柠檬酸溶液在乙二醇的交联作用下形成了K-Nb凝胶前驱体.用XRD和SEM研究了不同pH值、不同柠檬酸与金属离子的摩尔比条件下所形成的凝胶前驱体在不同温度下煅烧所得粉体的相组成和形貌.研究发现当柠檬酸与金属离子的摩尔比为3∶1,柠檬酸和乙二醇的摩尔比为1∶2时,可形成稳定的K-Nb前驱体溶液和凝胶.分析结果表明,K-Nb凝胶前驱体在加热过程中分解成K2CO3相,K2CO3与Nb-柠檬酸溶液发生反应生成KNbO3凝胶,凝胶经800 ℃煅烧3 h或160 ℃水热反应8 h可以制备出颗粒分布均匀的纯钙钛矿型KNbO3粉体.IR谱表明,800 ℃煅烧或160 ℃水热反应都出现了Nb-O的特征峰.","authors":[{"authorName":"苗鸿雁","id":"83822f6c-b990-47be-8993-5f189184751e","originalAuthorName":"苗鸿雁"},{"authorName":"王世平","id":"9a53df47-b23e-4dc9-8d93-732963194248","originalAuthorName":"王世平"},{"authorName":"谈国强","id":"18bf6f39-75b8-42dc-b81d-21e6f56aa28e","originalAuthorName":"谈国强"}],"doi":"","fpage":"7","id":"443bac3d-280c-4e69-b90a-8c772d825081","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"53ca814c-d321-4ef5-8ba0-5bef458f01a3","keyword":"液相法","originalKeyword":"液相法"},{"id":"2787fe83-e3c8-4c78-ad9c-29d1cbe15302","keyword":"铌酸钾","originalKeyword":"铌酸钾"},{"id":"5fa077fc-bd4c-4bd8-86dc-7ff804e82876","keyword":"凝胶前驱体","originalKeyword":"凝胶前驱体"}],"language":"zh","publisherId":"xyjsclygc2007z1003","title":"液相合成铌酸钾粉体的研究","volume":"36","year":"2007"},{"abstractinfo":"综述了LiNbO3、NaNbO3和KNbO3系无铅铁电陶瓷的最新研究进展及应用.对碱金属铌酸盐体系的掺杂和改性作了总结.介绍了目前制备铌酸盐陶瓷粉体所用方法,重点说明了水热法在碱金属铌酸盐陶瓷材料制备中的研究和应用现状.并展望了铌酸盐系无铅铁电陶瓷的发展趋势.","authors":[{"authorName":"王世平","id":"f51a4e2e-30e6-4f4d-9239-37a05dc8bd83","originalAuthorName":"王世平"},{"authorName":"苗鸿雁","id":"8f87d5d1-4e93-4c86-8113-49acf42f5b7d","originalAuthorName":"苗鸿雁"},{"authorName":"谈国强","id":"e15c1a74-d5f3-44c4-b02b-635c655c3d60","originalAuthorName":"谈国强"}],"doi":"10.3969/j.issn.1673-2812.2007.03.039","fpage":"486","id":"f8df66c2-0b30-4091-912a-5923397b2e8e","issue":"3","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"e28450fa-ee9b-4435-aea5-a7e49eea528e","keyword":"铌酸锂","originalKeyword":"铌酸锂"},{"id":"61bd8681-5434-4cec-bbc1-52b7111538e1","keyword":"铌酸钠","originalKeyword":"铌酸钠"},{"id":"63cacc7d-49e0-4ef0-acdf-743af47a75b3","keyword":"铌酸钾","originalKeyword":"铌酸钾"},{"id":"626f196d-2ab2-4286-8104-c2f29f8e2b38","keyword":"水热法","originalKeyword":"水热法"},{"id":"f8f025d9-368c-4e64-80bf-9197741d8ff2","keyword":"无铅铁电陶瓷","originalKeyword":"无铅铁电陶瓷"}],"language":"zh","publisherId":"clkxygc200703039","title":"碱金属铌酸盐铁电陶瓷的研究进展","volume":"25","year":"2007"},{"abstractinfo":"以氢氧化钾(KOH)和五氧化二铌(Nb2O5)为原料, 通过微波水热法在200℃下合成出具有不同晶相、形貌的铌酸钾粉体(KNbO3). 当KOH浓度在10~14mol/L时, 可以制备出纯相的KNbO3粉体. X射线衍射(XRD)、场发射扫描电镜(FESEM)和透射电镜(TEM)分析可知, KOH浓度由10mol/L增大到15mol/L时, KNbO3粉体由斜方六面体变为正交相, 再转变为四方相, 对应的形貌也由金字塔状变为棒状, 再转变为立方状. 当KOH浓度增大到15mol/L时, 出现了Nb2O5杂相. 常压烧结制备了KNbO3陶瓷, 其介电常数达到302, 介电损耗为0.023, 压电常数达到80 pC/N, 平面机电耦合系数为0.17, 机械品质因数为70, 居里温度为420℃, 正交?四方相变温度为223℃.","authors":[{"authorName":"秦波","id":"354f2efc-4ad9-45dc-a401-2a1f11a040f4","originalAuthorName":"秦波"},{"authorName":"谈国强","id":"78f729e3-99e2-4b3e-921e-d450483dcb15","originalAuthorName":"谈国强"},{"authorName":"苗鸿雁","id":"2c7b8aa1-c877-4e8d-b9cf-1e708af9cced","originalAuthorName":"苗鸿雁"},{"authorName":"夏傲","id":"c7569f39-193c-4064-a4b8-5c1f57de3dca","originalAuthorName":"夏傲"},{"authorName":"程蕾","id":"1159cd3a-72f4-4851-8fda-39addb56beb4","originalAuthorName":"程蕾"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2011.10925","fpage":"892","id":"f5ef37ae-572b-4005-abbd-578377a8bed4","issue":"8","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"801fea61-9ec2-42ad-8d6c-0aee1ddfd30c","keyword":"铌酸钾","originalKeyword":"铌酸钾"},{"id":"1b6621e8-b197-4175-a177-9e76d5e135fa","keyword":" microwave-assisted hydrothermal synthesis","originalKeyword":" microwave-assisted hydrothermal synthesis"},{"id":"d4acb41b-d8f8-4446-829a-78591a2ac5e6","keyword":" piezoelectric","originalKeyword":" piezoelectric"},{"id":"616d09d5-2835-499f-86c5-f127aa51834c","keyword":" dielectric","originalKeyword":" dielectric"}],"language":"zh","publisherId":"1000-324X_2011_8_3","title":"微波水热法制备KNbO3粉体及其性能研究","volume":"26","year":"2011"},{"abstractinfo":"以氢氧化钾(KOH)和五氧化二铌(Nb2O5)为原料,通过微波水热法在200℃下合成出具有不同晶相、形貌的铌酸钾粉体(KNbO3).当KOH浓度在10~14mol/L时,可以制备出纯相的KNbO3粉体.X射线衍射(XRD)、场发射扫描电镜(FESEM)和透射电镜(TEM)分析可知,KOH浓度由10mol/L增大到15mol/L时,KNbO3粉体由斜方六面体变为正交相,再转变为四方相,对应的形貌也由金字塔状变为棒状,再转变为立方状.当KOH浓度增大到15mol/L时,出现了Nb2O5杂相.常压烧结制备了KNbO3陶瓷,其介电常数达到302,介电损耗为0.023,压电常数达到80 pC/N,平面机电耦合系数为0.17,机械品质因数为70,居里温度为420℃,正交-四方相变温度为223℃.","authors":[{"authorName":"秦波","id":"ead8b500-596e-4663-a9b4-551bacca9861","originalAuthorName":"秦波"},{"authorName":"谈国强","id":"37888abf-e1c2-4467-bc56-5d9b0fe2c40a","originalAuthorName":"谈国强"},{"authorName":"苗鸿雁","id":"242d1f18-ad54-4c6b-94d1-f47fabb3d693","originalAuthorName":"苗鸿雁"},{"authorName":"夏傲","id":"eeb321b0-9514-4ea6-84d9-95dd9677d036","originalAuthorName":"夏傲"},{"authorName":"程蕾","id":"93bb5a83-5ebe-456d-8278-c50d1cb633c2","originalAuthorName":"程蕾"}],"doi":"10.3724/SP.J.1077.2011.10925","fpage":"892","id":"8d0a958a-0551-4448-b695-c164c7f60b8a","issue":"8","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"c1f2d39c-b3e8-4336-92e6-5807497bf5d0","keyword":"铌酸钾","originalKeyword":"铌酸钾"},{"id":"a4699c60-e56d-4af4-907d-13252b92870d","keyword":"微波水热","originalKeyword":"微波水热"},{"id":"75eafbcc-6390-4af1-a639-723060443f99","keyword":"压电性能","originalKeyword":"压电性能"},{"id":"4c525b1b-3dbe-4a7c-83b6-dd6e5a49fffd","keyword":"介电性能","originalKeyword":"介电性能"}],"language":"zh","publisherId":"wjclxb201108020","title":"微波水热法制备KNbO3粉体及其性能研究","volume":"26","year":"2011"},{"abstractinfo":"以KOH和Nb2O5为原料, KOH作为矿化剂,通过水热法合成了结晶度高﹑晶粒发育完整的KNbO3微晶.借助XRD分析了钾铌比、反应温度和反应时间对晶相和粒度的影响;并通过SEM分析了KNbO3的晶粒形貌.研究结果表明:钾铌比和反应温度是水热合成铌酸钾粉体的关键因素,所得铌酸钾为斜方晶相的微晶.","authors":[{"authorName":"苗鸿雁","id":"44cb1d6c-e36d-49e5-a128-0e264d040683","originalAuthorName":"苗鸿雁"},{"authorName":"王世平","id":"f1bd2bd7-649d-4402-ad4e-144f3a4e3e83","originalAuthorName":"王世平"},{"authorName":"谈国强","id":"4ade9a34-cd55-4d2b-81ff-0951eebffaef","originalAuthorName":"谈国强"}],"doi":"10.3969/j.issn.1001-1625.2007.01.002","fpage":"5","id":"1408e029-2f48-4989-abc5-47b26b277f36","issue":"1","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"148e3113-ab7c-4ec9-809f-815b9e5ce1c6","keyword":"铌酸钾","originalKeyword":"铌酸钾"},{"id":"385eea97-4243-4051-956b-e8a9fe13b32f","keyword":"水热合成","originalKeyword":"水热合成"},{"id":"82f1d06f-4f2e-4ade-86b4-aec90597d585","keyword":"斜方晶相","originalKeyword":"斜方晶相"}],"language":"zh","publisherId":"gsytb200701002","title":"水热法制备KNbO3粉体的研究","volume":"26","year":"2007"},{"abstractinfo":"以新型溶胶-凝胶法制备的平均晶粒尺寸为30 nm的铌酸钾钠粉体为原料,采用放电等离子体烧结工艺,在烧结温度为900℃,压力30 MPa,烧结时间1 min的条件下,制备得到纯正交相,相对密度高达99%以上,平均晶粒尺寸为40 nm的纳米铌酸钾钠陶瓷,并对该陶瓷的相结构、微观形貌、介电性能和铁电性能进行了研究.结果表明,与普通微米晶陶瓷不同,纳米铌酸钾钠陶瓷的室温介电常数仅为341,并且随温度变化不明显,表现出明显的介电弛豫现象,弥散因子γ为1.60,并具有明显的电滞回线,矫顽场强度为13.5 kV/cm,剩余极化为1.5 μC/cm2.尺寸降低所引起的纳米铌酸钾钠陶瓷中晶界相所占的比例增大是其性能变化的主要原因,并且可以推断,如果铌酸钾钠陶瓷具有\"临界尺寸\",那么其值应该在40 nm以下.","authors":[{"authorName":"王超","id":"266ca140-3ab4-43d2-b46c-cab34216e244","originalAuthorName":"王超"},{"authorName":"陈静","id":"ac674c6d-17f7-492a-b2af-0663007359c0","originalAuthorName":"陈静"},{"authorName":"陈红丽","id":"0fb4d8c8-1ed7-46ee-8dae-087312ce1b5b","originalAuthorName":"陈红丽"},{"authorName":"侯育冬","id":"dd1dae12-3852-4289-a8b8-92df0085bf53","originalAuthorName":"侯育冬"},{"authorName":"朱满康","id":"60e15a2f-2c94-457a-9ee3-b1ea4aa5369f","originalAuthorName":"朱满康"}],"doi":"10.15541/jim20140232","fpage":"59","id":"c1b2c87f-f312-424a-86fb-a79db56de70f","issue":"1","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"08b5eb68-26dd-4e90-b125-af801fae420c","keyword":"铌酸钾钠","originalKeyword":"铌酸钾钠"},{"id":"a44c255e-0a21-4172-b8ac-7a413a6c09b6","keyword":"纳米陶瓷","originalKeyword":"纳米陶瓷"},{"id":"7801986e-a997-4c37-b310-f522f98a43f9","keyword":"介电弛豫","originalKeyword":"介电弛豫"},{"id":"5fbb10e3-c4e6-417d-a346-65c9f1a7c055","keyword":"电滞回线","originalKeyword":"电滞回线"}],"language":"zh","publisherId":"wjclxb201501010","title":"纳米铌酸钾钠陶瓷的制备及性能","volume":"30","year":"2015"},{"abstractinfo":"使用坩埚下降法成功生长了尺寸为φ10mm×50mm、四方钨青铜结构、透明铌酸钾锂晶体,讨论了引起晶体开裂的主要原因,研究了该晶体的光透过性能和介电性能,室温下该晶体的介电常数ε33=127,ε11=376,居里温度为380℃.","authors":[{"authorName":"徐家跃","id":"bd9a3310-9950-4f2e-9ce5-851414ff737c","originalAuthorName":"徐家跃"},{"authorName":"林雅芳","id":"09bbbecb-b1ce-4274-b9bb-5504af4ee2ee","originalAuthorName":"林雅芳"},{"authorName":"范世Ji","id":"4089139e-915c-4096-a669-b58876af697c","originalAuthorName":"范世Ji"}],"categoryName":"|","doi":"","fpage":"747","id":"c9995c1e-ab7f-45e6-8426-674515789e55","issue":"4","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"78ae3bfb-4fe6-46ce-97e8-97d152d750d7","keyword":"铌酸钾锂晶体","originalKeyword":"铌酸钾锂晶体"},{"id":"9f6eb783-f59b-4aa4-be24-5cb1ce281e3c","keyword":" Bridgman method","originalKeyword":" Bridgman method"},{"id":"9f087c30-f71f-4324-88e5-0fe6f8d7db20","keyword":" crystal growth","originalKeyword":" crystal growth"},{"id":"c498d803-f86d-43c8-ab7d-a3da03477ab5","keyword":" property","originalKeyword":" property"}],"language":"zh","publisherId":"1000-324X_2000_4_5","title":"铌酸钾锂晶体的生长与性能","volume":"15","year":"2000"},{"abstractinfo":"使用坩埚下降法成功生长了尺寸为φ10mm50mm、四方钨青铜结构、透明铌酸钾锂晶体,讨论了引起晶体开裂的主要原因,研究了该晶体的光透过性能和介电性能,室温下该晶体的介电常数ε33=127,ε11=376,居里温度为380°C.","authors":[{"authorName":"徐家跃","id":"40199c3d-796f-4d24-a576-87ff23f3ad0b","originalAuthorName":"徐家跃"},{"authorName":"林雅芳","id":"96f8f381-2917-4f87-8966-6acd3b06efa9","originalAuthorName":"林雅芳"},{"authorName":"范世","id":"6c3f4019-75fd-4759-b744-2c62bcc8b097","originalAuthorName":"范世"}],"doi":"10.3321/j.issn:1000-324X.2000.04.029","fpage":"747","id":"ac6e0176-053d-43ce-9048-be98b3cce9a1","issue":"4","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"b3d918b9-660c-45f8-a2da-a1baee097707","keyword":"铌酸钾锂晶体","originalKeyword":"铌酸钾锂晶体"},{"id":"d33d2e48-f741-4fa6-bd62-336303671b5d","keyword":"坩埚下降法","originalKeyword":"坩埚下降法"},{"id":"d1e7ec26-f114-4c72-80e7-95acd20f0110","keyword":"晶体生长","originalKeyword":"晶体生长"},{"id":"32e5769f-6d28-41d6-9be4-d64ed0b8ae52","keyword":"性能","originalKeyword":"性能"}],"language":"zh","publisherId":"wjclxb200004029","title":"铌酸钾锂晶体的生长与性能","volume":"15","year":"2000"},{"abstractinfo":"在铌酸钾钠(KNN)陶瓷中掺杂锂和铋的氧化物作为晶粒生长抑制剂,用常压烧结工艺制备了铌酸钾钠透明陶瓷(K0.48-0.5xNa0.52-0.5xLixNb1-xBixO3,x=0.04~0.15)材料。研究了掺杂量、烧结工艺条件对陶瓷透明性、光电系数、晶相结构和微观形貌的影响。当x=0.09时,厚度为0.5mm陶瓷样品的红外透光率达到82%,光电系数为6.06×1011m/V。","authors":[{"authorName":"施东良","id":"64428068-4a9d-4510-9f95-6cba6b9c5747","originalAuthorName":"施东良"},{"authorName":"李坤","id":"5facaa61-8225-4a77-acf1-0c5f55347335","originalAuthorName":"李坤"},{"authorName":"李发亮","id":"464706bf-11c8-4a00-a36f-7e94b750bebd","originalAuthorName":"李发亮"},{"authorName":"王雨","id":"96b33df5-75ef-4df5-8553-bdd56cb83881","originalAuthorName":"王雨"},{"authorName":"张德银","id":"14b001e9-4a35-4af0-bb79-cccbe6d53abd","originalAuthorName":"张德银"},{"authorName":"李金华","id":"bdfad39b-31c6-4ed8-ab39-c0f0f915f73a","originalAuthorName":"李金华"},{"authorName":"陈王丽华","id":"34f22bdc-fd08-4be9-81a0-e38723fe50f2","originalAuthorName":"陈王丽华"}],"doi":"","fpage":"290","id":"543cefa6-2493-471a-a4af-3dedcdd79489","issue":"3","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"55a1215b-eeb9-4384-af24-430545f216d6","keyword":"透明陶瓷","originalKeyword":"透明陶瓷"},{"id":"90eff0d6-4571-464a-86ce-5b7ba6f6b7cc","keyword":"光电性","originalKeyword":"光电性"},{"id":"67eca0b1-45a8-4492-b86b-7b8a3e7ca7b5","keyword":"铌酸钾钠","originalKeyword":"铌酸钾钠"}],"language":"zh","publisherId":"gncl201203005","title":"常压烧结制备透明铌酸钾钠陶瓷","volume":"43","year":"2012"}],"totalpage":1540,"totalrecord":15395}