X.C. Wei
,
L. Li
,
R.Y. Fu
金属学报(英文版)
Tensile mechanical properties of 1.6Si-1.58Mn-0.195C TRIP (transformation-inducedplasticity) steels under high strain rate and effects of DP (dual-phase) treatments werestudied and compared to the quasi-static tensile behavior. The results show that theincreasing of strain rate leads to increasing in their strengths and decreasing in theuniform elongation remarkably. Because the stable retained austenite in TRIP steelcan transform to martensite during tensile testing and the material exhibits excellentcharacteristic of transformation induced plasticity, the plastic deformation behavior isevidently improved and the combination of strength and elongation is superior to thatof dual-phase steel, although its strength is smaller than that of DP steel. However,DP treated steel shown lower elongation under dynamic tension in spite of higherstrength. A model was proposed to explain the excellent elongation rate of TRIPsteel compared with DP steel on the basis of SEM analysis and the strength of thecomponents in microstructure.
关键词:
automobile sheet steel
,
null
,
null
,
null