CHU Mansheng
,
YANG Xuefeng
,
SHEN Fengman
,
YAGI Junichiro
,
NOGAMI Hiroshi
钢铁研究学报(英文版)
A multifluid blast furnace model was simply introduced and was used to simulate several innovative ironmaking operations. The simulation results show that injecting hydrogen bearing materials, especially injecting natural gas and plastics, the hydrogen reduction is enhanced, and the furnace performance is improved simultaneously. Total heat input shows obvious decrease due to the decrease of heat consumption in direct reduction, solution loss and silicon transfer reactions. If carbon composite agglomerates are charged into the furnace, the temperature of thermal reserve zone will obviously decrease, and the reduction of ironbearing burden materials will be retarded. However, the efficiency of blast furnace is improved just due to the decrease in heat requirements for solution loss, sinter reduction, and silicon transfer reactions, and less heat loss through top gas and furnace wall. Finally, the model is used to investigate the performance of blast furnace under the condition of top gas recycling together with plastics injection, cold oxygen blasting and carbon composite agglomerate charging. The lower furnace temperature, extremely accelerated reduction rate, drastically decreased CO2 emission and remarkably enhanced heat efficiency were obtained by using the innovative operations, and the blast furnace operation with superhigh efficiency can be realized.
关键词:
blast furnace;innovative ironmaking technology;multifluid blast furnace model
CHU Mansheng
,
GUO Xianzhen
,
SHEN Fengman
,
YAGI Junichiro
,
NOGAMI Hiroshi
钢铁研究学报(英文版)
The reducibility of ironbearing burdens was emphasized for improving the operation efficiency of blast furnace. The blast furnace operation of charging the burdens with high reducibility has been numerically evaluated using a multifluid blast furnace model. The effects of reaction rate constants and diffusion coefficients were investigated separately or simultaneously for clarifying the variations of furnace state. According to the model simulation results, in the upper zone, the indirect reduction of the burdens proceeds at a faster rate and the shaft efficiency is enhanced with the improvement under the conditions of interface reaction and intraparticle diffusion. In the lower zone, direct reduction in molten slag is restrained. As a consequence, CO utilization of top gas is enhanced and the ratio of direct reduction is decreased. It is possible to achieve higher energy efficiency of the blast furnace, and this is represented by the improvement in productivity and the decrease in consumption of reducing agent. The use of highreducibility burdens contributes to a better performance of blast furnace. More efforts are necessary to develop and apply highreducibility sinter and carbon composite agglomerates for practical application at a blast furnace.
关键词:
ironbearing burden;reducibility;multifluid model;3interface shrinking core model