YANG Ying
,
YAN Qing-zhi
,
YANG Ya-feng
,
ZHANG Le-fu
,
GE Chang-chun
钢铁研究学报(英文版)
The corrosion behaviors of CNS-I and modified CNS-II were evaluated by exposing to superciritical water (SCW) at 550 ℃ and 25 MPa with a dissolved oxygen concentration of 200×10-9 for up to 1000 h. Detailed corrosion results of these two alloys were provided, including the growth rate of the oxide scales, microstructure of the oxide scales, distribution of phases and alloying elements. The mass gains of CNS-I and modified CNS-II were 60973 mg/dm2 and 45942 mg/dm2, respectively, after exposing to SCW for 1000 h. A duplex oxide scale with an outer porous magnetite layer and an inner relatively dense magnetite/spinel-mixed layer was identified on CNS-I and modified CNS-II after the test. The oxide scales were rather porous at the beginning of the test but the porosity decreased with increase of the exposure duration. It was found that Fe was enriched in the outer oxide layer, Cr was enriched in the inner oxide layer and O existed at a very high concnetration in the whole oxide scale. Other alloying elements such as Mo, W, Mn were depleted from the outer oxide layer and showed slightly enrichment in the inner oxide layer. The distributution of Ni was different from other elements, it was enriched in the interface bewteen the base metal and the oxide scale and depleted in the outer and inner oxide layers.
关键词:
ferritic/martensitic steel
,
supercritical water
,
corrosion kinetics
,
oxide scale morphology and structure
YANG Ying
,
YAN Qing-zhi
,
MA Rong
,
GE Chang-chun
钢铁研究学报(英文版)
Ferritic/martensitic (F/M) steels have been recommended as one of the candidate materials for supercritical water cooled reactor (SCWR) in-core components use for its high thermal conductivity, low thermal expansion coefficient and inherently good dimensional stability under irradiation condition in comparison to austenitic steel. CNS-Ⅱ F/M steel which has good mechanical properties was one of the 9-12Cr F/M steels designed for SCWR in the previous work. In this study a modified CNS-Ⅱ F/M steel was used and it′s ultimate tensile strength was 925 MPa at room temperature and 483 MPa at 600 ℃ after optimizing heat treatment parameter. The ductile to brittle transition temperature of modified CNS-Ⅱ F/M steel is -55 ℃. Those are at the same level or even higher than that of CNS-Ⅱ and some commercial F/M steels nominated for SCWR in-core component use. The transmission electron microscope (TEM) results showed that the mechanical properties of the tempered martensite was closely related to the decomposition stage of the martensite.
关键词:
supercritical water reactor
,
ferritic/martensitic steel
,
cladding material
YANG Ying
,
YAN Qing-zhi
,
GE Chang-chun
钢铁研究学报(英文版)
Modified CNS-Ⅱ F/M steel was designed for in-core components of supercritical water cooled reactor. Study on the hot deformation behavior of modified CNS-Ⅱ F/M steel is of great importance for processing parameter planning and microstructure controlling during hot deformation. The hot deformation behavior of modified CNS-Ⅱ F/M steel was investigated through isothermal hot compression test at temperature ranging from 1223 to 1373 K and strain rate 001 to 10 s-1. The true stress-true strain data gained from compression tests were used to built constitutive equation of modified CNS-Ⅱ F/M steel. The influence of strain on the accuracy of constitutive analysis was incorporated, assuming strain has a influence on material constants. A 5th order polynominal equation with very good accuracy was used to represent the influence of strain on material constant. The flow stresses calculated from the constitutive equation were compared with test values in the whole experiment range and the absolute average error for the constitutive equation in predicting flow stress is 4728%. At last, the recrystallization behavior of modified CNS-Ⅱ F/M steel was investigated. The relationship of critical strain and peak strain with Zener-Hollomon parameter were given by an experimental equation.
关键词:
F/M steel
,
constitutive equation
,
dynamic recrystallization
LI Xing-gang
,
YAN Qing-zhi
,
et al
钢铁研究学报(英文版)
Ferritic/martensitic steels with 9-12 wt%Cr are favored candidates for fuel cladding tube and in-core applications for construction of supercritical water cooled reactor. 9Cr-3WVTiTaN reduced activation ferritic/martensitic steel, designated as China Nuclear Steel-I (CNS-I), is patterned after T91 steel. The idea of low activation material and microalloy technology were introduced into the design of the steel. A characterization program is being performed to determine the relevant mechanical and physical metallurgical properties in order to qualify it for fuel cladding and in-core applications in supercritical water cooled reactor. The hardening, tempering and transformation behavior of CNS-I steel was investigated. The steel has advantages in tensile properties at elevated temperature relative to zircaloy that has been widespread applied as cladding material in conventional light water reactors. CNS-I steel exhibits comparable tensile properties and impact toughness to T91 steel which exhibites availability in the present fission reactors and fast breeder reactor but includes undesired elements such as molybdenum and niobium for reduced activation.
关键词:
supercritical water cooled reactor;reduced activation ferritic/martensitic steel;tensile;Charpy impact