{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"双金属纳米颗粒由于其可调的显微结构和优异性能引起了人们的普遍关注.本文综述了双金属纳米颗粒近年来的研究现状.总结了化学还原法,多元醇还原法,置换反应法和微波辅助加热法制备双金属纳米颗粒的研究成果,并提出了双金属纳米颗粒目前研究中存在的问题和今后潜在的发展方向.","authors":[{"authorName":"王小凤","id":"6ead9d7e-e2ce-4cd6-84c1-38ebda8e409c","originalAuthorName":"王小凤"},{"authorName":"黄自力","id":"b8a63c28-87f1-4438-90ad-3421b17ac3e9","originalAuthorName":"黄自力"},{"authorName":"张海军","id":"d8fae288-61f8-423d-adf5-6620889f0a3b","originalAuthorName":"张海军"}],"doi":"","fpage":"1751","id":"24a47cf0-42f8-4453-a2a3-adbbc6ba1bd9","issue":"8","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"6ec390a2-0447-4ae0-83eb-fc473a27503c","keyword":"双金属纳米颗粒","originalKeyword":"双金属纳米颗粒"},{"id":"9b488f01-fb8f-4fb4-9a85-eb7f9400b74e","keyword":"制备","originalKeyword":"制备"},{"id":"2adccdbb-ac59-4bd8-a438-4ddf0706c8d9","keyword":"结构","originalKeyword":"结构"},{"id":"21bb1a0e-620a-4946-9723-b3c3dd681da5","keyword":"综述","originalKeyword":"综述"}],"language":"zh","publisherId":"xyjsclygc201308045","title":"双金属纳米颗粒的制备方法","volume":"42","year":"2013"},{"abstractinfo":"采用化学共还原法制备了聚乙烯吡咯烷酮(PVP)保护的Au/Ni双金属纳米颗粒,采用UV-Vis、TEM对所合成的纳米颗粒进行了表征,研究了双金属纳米颗粒的化学组成对其催化水解NaBH4制氢活性的影响.结果表明:所制备的Au/Ni双金属纳米颗粒的平均粒径为2.9~4.2 nm,Au/Ni双金属纳米颗粒的催化活性高于Au和Ni单金属纳米颗粒的活性,Au50Ni50双金属纳米颗粒的催化活性最高,30℃时其催化活性数值达到550 mol-H2-h-1·mol-M-1.XPS和密度泛函理论(DFT)的结果都表明:Au/Ni双金属纳米颗粒优异的催化性能可归因于电荷转移效应,Ni原子与Au原子之间发生的电子转移使得Au原子带负电而Ni原子带正电,荷电的Au和Ni原子成为催化反应的活性中心.Au50Ni50双金属纳米颗粒催化水解NaBH4制氢的活化能为61.9 kJ/mol.","authors":[{"authorName":"王小凤","id":"500aac4b-8da4-4a60-a398-0cb1e6d42c8e","originalAuthorName":"王小凤"},{"authorName":"曹迎楠","id":"8bc2a33c-27d1-464b-a534-d7218398dc3b","originalAuthorName":"曹迎楠"},{"authorName":"孙少瑞","id":"969c5b90-051f-4e00-9d8b-8d85e3a62d3a","originalAuthorName":"孙少瑞"},{"authorName":"黄自力","id":"c16dc449-5a6c-48a6-8b56-87044bb0aeff","originalAuthorName":"黄自力"},{"authorName":"张海军","id":"9053476b-191f-49c8-8558-5842146a1411","originalAuthorName":"张海军"},{"authorName":"张少伟","id":"4c732ef7-1bf2-45bb-bf49-34a148b333b3","originalAuthorName":"张少伟"}],"doi":"","fpage":"753","id":"92d76956-ee5c-4ffd-89a9-3333cdb18966","issue":"3","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"90e29158-16fa-40de-bd53-dcf9e63b2b95","keyword":"Au/Ni","originalKeyword":"Au/Ni"},{"id":"b51700ec-4c5a-4b90-b486-9a7e1568dfef","keyword":"双金属纳米颗粒","originalKeyword":"双金属纳米颗粒"},{"id":"a66fe0e6-9483-47e1-8ffe-81983170cb54","keyword":"制氢","originalKeyword":"制氢"},{"id":"9e079554-e053-494e-a79d-a8d61a11518d","keyword":"催化活性","originalKeyword":"催化活性"}],"language":"zh","publisherId":"xyjsclygc201503046","title":"Au/Ni双金属纳米颗粒的制备及其催化制氢活性","volume":"44","year":"2015"},{"abstractinfo":"金属纳米颗粒,特别是金和它的双金属纳米颗粒作为强大的绿色催化剂广泛用于有机合成反应中。在一个反应体系中使用2个不同催化剂(如协同催化),在均相催化中是一个很好的策略。然而,这种方法仍在发展中。最近我们发现,金/钯双金属纳米颗粒与路易斯酸的协同催化体系可用于伯胺的N-烷基化:即酰胺与醇之间的氢自转移反应。我们详细报道了路易斯酸对该氢自转移反应的影响。结果表明,所选的路易斯酸不仅影响生成目标产物的反应路径,而且影响生成多个中间体和副产物的反应路径。弱的路易斯酸,如三氟甲磺酸碱土金属盐,非常适合酰胺的N-烷基化反应。","authors":[{"authorName":"Hiroyuki Miyamura","id":"993107f1-f2f5-47af-b80f-3e2b4e987561","originalAuthorName":"Hiroyuki Miyamura"},{"authorName":"Satoshi Isshiki","id":"bef2a59e-b49a-4b26-8eaf-62710be82c6c","originalAuthorName":"Satoshi Isshiki"},{"authorName":"Hyemin Min","id":"973b0215-1ab9-4cd4-83bd-f0f5cadb487a","originalAuthorName":"Hyemin Min"},{"authorName":"ShūKobayashi","id":"8d9bcdbf-3e0c-441e-910d-d8a9f8e0ad30","originalAuthorName":"ShūKobayashi"}],"doi":"10.1016/S1872-2067(16)62483-X","fpage":"1662","id":"da4f3489-1c79-4173-bffd-954ced707fea","issue":"10","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"94a52fea-e0d6-4a60-a265-03c8f659479b","keyword":"金","originalKeyword":"金"},{"id":"1f9a0620-6aa8-4047-904a-6355276b44d2","keyword":"钯","originalKeyword":"钯"},{"id":"7732a18d-2e51-42e7-be9a-acf690b2b376","keyword":"双金属纳米颗粒","originalKeyword":"双金属纳米颗粒"},{"id":"40f8b263-a177-4c06-8d66-e62cbe007c22","keyword":"路易斯酸","originalKeyword":"路易斯酸"},{"id":"98f1cf4a-90b1-4b01-b7d4-73e112d348ce","keyword":"酰胺合成","originalKeyword":"酰胺合成"},{"id":"c0fc75e7-55e3-4799-8ee1-2abbdfd7535c","keyword":"氢自转移","originalKeyword":"氢自转移"}],"language":"zh","publisherId":"cuihuaxb201610010","title":"金/钯双金属纳米颗粒协同催化酰胺和醇间氢自转移反应中路易斯酸驱动反应路径","volume":"37","year":"2016"},{"abstractinfo":"为了提高零价铁对氯代有机物还原脱氯的性能,采用还原沉淀法制备了纳米钯/铁双金属颗粒.利用X射线衍射(XRD)、X射线荧光光谱(XRF)、扫描电子显微镜(SEM)、透射电镜(TEM)、以及BET-N_2 比表面积法对纳米钯/铁双金属颗粒进行了表征.结果表明,制备的纳米钯/铁双金属颗粒中Fe主要以α-Fe~0 形式存在.纳米钯/铁双金属颗粒的直径约为30~50 nm,比表面积约51 m~2/g.纳米钯/铁双金属颗粒对一氯乙酸还原脱氯的脱氯率是还原铁粉和纳米铁粉对一氯乙酸还原脱氯的脱氯率的7.9倍和1.7倍.","authors":[{"authorName":"陈超","id":"fe0e096c-33b5-4920-aecc-fec92e4d5ab3","originalAuthorName":"陈超"},{"authorName":"王向宇","id":"9c52c008-313e-4078-a6b1-1beb29e02d85","originalAuthorName":"王向宇"},{"authorName":"常影","id":"ed1bd204-add2-40e0-ab81-eca257b5ec07","originalAuthorName":"常影"},{"authorName":"刘惠玲","id":"2498a59b-62a4-432a-8607-cfee18011bfe","originalAuthorName":"刘惠玲"}],"doi":"","fpage":"535","id":"ff44bad9-8a4d-4a82-a4d1-921566eea7d0","issue":"4","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"31f2efc2-2994-4910-8b30-bbc20b5f8b8c","keyword":"纳米钯/铁双金属颗粒","originalKeyword":"纳米钯/铁双金属颗粒"},{"id":"9400d6c4-d1fc-451c-9456-d39a31a3611c","keyword":"还原脱氯","originalKeyword":"还原脱氯"},{"id":"08b51173-cf98-4e62-a0a9-6ae3ed44cd10","keyword":"一氯乙酸","originalKeyword":"一氯乙酸"}],"language":"zh","publisherId":"clkxygy200904023","title":"纳米钯/铁双金属颗粒对一氯乙酸的脱氯","volume":"17","year":"2009"},{"abstractinfo":"为了提高海藻酸钠(SA)对疏水性农药的负载量和释药缓释作用,将其与月桂醇通过偶联酯化反应进行疏水改性,对改性后的海藻酸钠进行红外光谱、核磁共振表征分析,结果证明月桂醇侧链成功接枝到海藻酸钠分子骨架上.将月桂醇改性海藻酸钠(DA)和十六烷基三甲基溴化铵(CTAB)与层状双金属氢氧化物(LDH)纳米颗粒进行复配,其Zeta电位分别为+44.9 mV和-33.2 mV,同时其粒径分别增大到93.3 nm和659.8 nm.结果表明带负电的月桂醇改性海藻酸钠吸附在层状双金属氢氧化物颗粒表面可以阻碍颗粒间的相互聚集,在分散体系中表现出了良好的稳定性能.高速剪切下制备稳定Pickering乳液,对疏水性农药氯氟氰菊酯进行了释药试验,表明改性后的海藻酸钠与LDH颗粒制备Pickering乳液对氯氟氰菊酯具有较好的药物缓释作用.","authors":[{"authorName":"刘若林","id":"02350485-6875-4534-b7b1-3efc4c08d6e2","originalAuthorName":"刘若林"},{"authorName":"李嘉诚","id":"27dece82-48c9-4540-8418-5159fdb831b6","originalAuthorName":"李嘉诚"},{"authorName":"冯玉红","id":"98c9d026-5be9-4ae3-bf69-aedcf47b5b5c","originalAuthorName":"冯玉红"},{"authorName":"颜慧琼","id":"6c9c6d9b-d7ea-4d18-b31a-b20eb04e286e","originalAuthorName":"颜慧琼"},{"authorName":"黄俊浩","id":"9162f595-d40a-4c79-bce1-b124092fa089","originalAuthorName":"黄俊浩"},{"authorName":"刘艳凤","id":"665de1cb-bf7b-474b-8575-2cc8c992c5a4","originalAuthorName":"刘艳凤"},{"authorName":"程春风","id":"f7c53267-6511-42e9-89d9-2fabc6289645","originalAuthorName":"程春风"},{"authorName":"林强","id":"e360f42f-b65e-4ea4-bb79-93dc3b28a154","originalAuthorName":"林强"}],"doi":"","fpage":"102","id":"235c59d6-5d53-40bd-9146-75da0a5850cf","issue":"4","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"2a9e3003-65d3-42d7-85ea-6756209743ec","keyword":"月桂醇改性海藻酸钠","originalKeyword":"月桂醇改性海藻酸钠"},{"id":"edbe9809-b136-4cdb-aba3-8b349a692e9e","keyword":"层状双金属氢氧化物纳米颗粒","originalKeyword":"层状双金属氢氧化物纳米颗粒"},{"id":"093451d2-a977-4f96-aee7-23914732804d","keyword":"Pickering乳液","originalKeyword":"Pickering乳液"},{"id":"ebe9e927-30d2-40ad-ab0c-58bdb720ab83","keyword":"缓释载药","originalKeyword":"缓释载药"},{"id":"2b50610a-92e0-4b1f-8a45-2fec01fd7316","keyword":"氯氟氰菊酯","originalKeyword":"氯氟氰菊酯"}],"language":"zh","publisherId":"gfzclkxygc201504021","title":"月桂醇基海藻酸钠与层状双金属纳米颗粒稳定载药Pickering乳液及其缓释性能","volume":"31","year":"2015"},{"abstractinfo":"采用化学共还原法制备了聚乙烯吡咯烷酮(PVP)稳定的Pt/Co双金属纳米溶胶,利用UV-Vis、TEM等对所合成的Pt/Co双金属纳米溶胶进行了表征,并系统研究了PVP用量,还原剂用量,双金属比例对该溶胶型纳米双金属催化剂活性的影响.结果表明:所制备的Pt/Co双金属纳米溶胶的平均粒径在2~3 nm之间,大部分双金属纳米溶胶催化剂催化NaBH4制氢的活性都优于单金属Pt和Co纳米溶胶,Pt10Co90双金属纳米溶胶的催化活性最高,其催化NaBH4制取氢气的活性可以达到8800 mol-H2·mol-催化剂-1·h-1,该双金属纳米溶胶催化NaBH4水解反应的活化能为61.8 kJ/mol.所制备的Pt/Co双金属纳米溶胶催化剂具有很好的稳定性,即使在4次催化试验后该催化剂仍然保持着较高的催化活性.","authors":[{"authorName":"成君","id":"ea11b5b1-7da3-44a1-860d-7a844b22bc63","originalAuthorName":"成君"},{"authorName":"古亚军","id":"13e817aa-c10c-453a-bf25-fe807c2ae48a","originalAuthorName":"古亚军"},{"authorName":"孔德成","id":"983bc015-ce41-42b8-9502-c443808cefc2","originalAuthorName":"孔德成"},{"authorName":"向胜","id":"db8cfec3-4872-49cd-9370-55b0cee6571f","originalAuthorName":"向胜"},{"authorName":"王鹏","id":"ea33ac0e-cfb5-4bbe-b398-db84894ac81e","originalAuthorName":"王鹏"},{"authorName":"张海军","id":"d9655a4c-7370-4477-aa58-e82f1c10da1a","originalAuthorName":"张海军"},{"authorName":"张少伟","id":"29da8ed2-004c-445c-bc9c-398ebce9bf6b","originalAuthorName":"张少伟"}],"doi":"","fpage":"2209","id":"00d15b9c-dae1-4acb-93ab-965b69024af9","issue":"9","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"c35f545a-ab06-471a-b15b-193e7cf211d3","keyword":"Pt/Co","originalKeyword":"Pt/Co"},{"id":"faf554ae-3368-4189-afec-1dcc0a39d5f0","keyword":"催化活性","originalKeyword":"催化活性"},{"id":"03a4df07-d973-4c65-94e1-46c13ea0e4a6","keyword":"双金属","originalKeyword":"双金属"},{"id":"8b785f63-221a-44ae-918b-a0d918718ec6","keyword":"纳米溶胶","originalKeyword":"纳米溶胶"},{"id":"a1f83031-a3a6-4912-9b23-6e6cd398c8d9","keyword":"硼氢化钠","originalKeyword":"硼氢化钠"},{"id":"9f9be308-e3af-4bcb-9796-5d220675e16b","keyword":"制氢","originalKeyword":"制氢"}],"language":"zh","publisherId":"xyjsclygc201409032","title":"Pt/Co双金属纳米溶胶的制备及催化制氢性能","volume":"43","year":"2014"},{"abstractinfo":"采用电沉积方法制备银铜双金属纳米合金, 用X射线衍射仪(XRD)及高分辨率透射电子显微镜(HRTEM), 扫描电子显微镜(SEM)和电化学工作站分别对样品的结构、微观形貌和电催化性质进行了表征。结果表明, 银铜双金属纳米合金电极在H2O2溶液中表现出较强的还原电流, 可以作为阴极催化剂; 随着银铜双金属纳米合金沉积电位的变负, 阴极催化作用减弱, 形貌由穗状晶向树枝晶转变; 随着铜离子浓度的提高, 阴极催化作用增强, 银铜双金属纳米合金的形貌由树枝晶向棒状晶转变。这意味着, 本文观察到了银铜双金属纳米合金的双金属电催化协同效应。","authors":[{"authorName":"刘婧陈福义张吉晔樊莉红张金生","id":"7858ead5-6a28-4e4c-9fa8-bacbcd1b1ded","originalAuthorName":"刘婧陈福义张吉晔樊莉红张金生"}],"categoryName":"|","doi":"","fpage":"49","id":"757109ac-6aa6-4ebf-b38b-e0447b9b7eb0","issue":"1","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"41e79f28-9b66-4fab-8cfa-2ad5753d3dc6","keyword":"金属材料","originalKeyword":"金属材料"},{"id":"ec855c79-f7d0-4821-b4c3-68701dad911c","keyword":"electrodeposition","originalKeyword":"electrodeposition"},{"id":"52b41456-f09b-4238-b4e7-465070be97a8","keyword":"silver–copper bimetallic nanoalloy","originalKeyword":"silver–copper bimetallic nanoalloy"},{"id":"c3cd64a9-e211-4c44-a7c1-067bb419ee46","keyword":"catalytic performance","originalKeyword":"catalytic performance"}],"language":"zh","publisherId":"1005-3093_2012_1_17","title":"银钢双金属纳米合金的制备和电催化性质","volume":"26","year":"2012"},{"abstractinfo":"纳米催化介于均相催化与多相催化之间,也称为”半多相催化”,目前正受到人们越来越多的关注.最近几年,应用双金属纳米材料进行催化研究取得了很大进展,使用这些催化材料可以增加反应活性和选择性,而且能很好地得以回收.本文综述了双金属纳米材料催化的各种有机反应,如选择性氧化/氢化、偶联和其它反应(脱卤、酰胺化、还原氨化、芳基硼酸与烯酮的1,4-不对称加成和氢解).将双金属纳米材料用于催化合成更加复杂的有机分子值得期待.在双金属纳米有机催化领域,基础理论和实际应用尚有较大的发展空间.未来该领域的发展需要开展多学科的合作,包括合理设计和可控制备相关的双金属纳米材料、深入理解催化机理及发展计算催化.","authors":[{"authorName":"蔡双飞","id":"f46b958b-1d7f-401c-8751-261646a0f499","originalAuthorName":"蔡双飞"},{"authorName":"王定胜","id":"7941b7f4-7592-4799-aabf-44a7cf7a02fd","originalAuthorName":"王定胜"},{"authorName":"牛志强","id":"924b220e-3533-4868-b47a-769b34c06d8a","originalAuthorName":"牛志强"},{"authorName":"李亚栋","id":"ac49809b-57a3-494b-9e6c-927f1082ce9c","originalAuthorName":"李亚栋"}],"doi":"10.1016/S1872-2067(12)60701-3","fpage":"1964","id":"d92430d6-6116-4395-88da-510568aebedd","issue":"11","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"3f1511fe-d12d-4f60-b5d5-4d2a8b0b34d0","keyword":"双金属纳米合金","originalKeyword":"双金属纳米合金"},{"id":"f784c628-c1c8-4edb-8dcc-9c0089badde6","keyword":"催化剂","originalKeyword":"催化剂"},{"id":"9cad5f51-12a6-4c6f-a476-19e6a7e8ccb9","keyword":"有机反应","originalKeyword":"有机反应"},{"id":"8adc8999-7f90-4648-965c-bfdd65fd5634","keyword":"多相催化","originalKeyword":"多相催化"}],"language":"zh","publisherId":"cuihuaxb201311002","title":"双金属纳米材料催化的有机反应进展","volume":"34","year":"2013"},{"abstractinfo":"采用化学共还原法制备了聚乙烯吡咯烷酮(PVP)稳定的Pd/Ni双金属纳米溶胶,采用TEM、HR-TEM等对所合成的Pd/Ni双金属纳米溶胶进行了表征,并系统研究了PVP用量、还原剂用量、金属盐离子浓度及金属比例等对该溶胶型双金属纳米催化剂的影响.结果表明:所制备的Pd/Ni双金属纳米溶胶的平均粒径在2 nm左右,双金属纳米溶胶催化剂催化NaBH4制氢活性优于单金属Pd和Ni纳米溶胶的活性.其中Pd10Ni90双金属纳米溶胶的催化活性最高,其催化NaBH4制取氢气的活性可以达到8250 molH2·molpd1·h-1,Pd20Ni80双金属纳米溶胶催化剂催化NaBH4水解反应的活化能为35.7 kJ/mol,反应焓为33.3 kJ/mol,反应熵为-150 J/mol.研究结果还表明,所制备的Pd/Ni双金属纳米溶胶催化剂具有很好的催化稳定性,即使4次催化试验后该催化剂仍然保持着较高的催化活性.密度泛函理论计算结果表明,Ni原子与Pd原子之间发生的电子转移使得Pd原子带负电而Ni原子带正电,荷电的Pd和Ni原子成为催化反应的活性中心.","authors":[{"authorName":"赵万国","id":"f93a883a-c8ff-478e-b033-7db94b883d00","originalAuthorName":"赵万国"},{"authorName":"李文","id":"47465001-3d9f-4561-b48c-d18d17690ee5","originalAuthorName":"李文"},{"authorName":"鲁礼林","id":"ee20dc4d-17ff-450f-a2f7-c55b5770d9b2","originalAuthorName":"鲁礼林"},{"authorName":"李发亮","id":"5d42e478-b38e-407d-9c35-c010cb1230a9","originalAuthorName":"李发亮"},{"authorName":"张海军","id":"1ebd47df-9d23-4715-b93d-15e77f3883aa","originalAuthorName":"张海军"},{"authorName":"张少伟","id":"86fd9e98-8b9b-4b53-94e3-c85bfd17ab50","originalAuthorName":"张少伟"}],"doi":"","fpage":"3160","id":"4c983678-e498-4e3a-9be2-b0d3bc3f6027","issue":"12","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"1f9b47d5-7650-4ca1-8a3d-a243bfa3428c","keyword":"Pd/Ni双金属","originalKeyword":"Pd/Ni双金属"},{"id":"dc7c1ecd-0659-42e9-96ca-0a3de52e094e","keyword":"催化活性","originalKeyword":"催化活性"},{"id":"9c51c281-f0c8-413d-825d-b67cb8617f9e","keyword":"纳米溶胶","originalKeyword":"纳米溶胶"},{"id":"591babed-2f11-432d-8700-b8c35ef9d84e","keyword":"硼氢化钠","originalKeyword":"硼氢化钠"},{"id":"74b10452-8990-4d44-b5e4-1bc27263469e","keyword":"制氢","originalKeyword":"制氢"}],"language":"zh","publisherId":"xyjsclygc201612024","title":"Pd/Ni双金属纳米溶胶的制备及催化制氢性能的研究","volume":"45","year":"2016"},{"abstractinfo":"在PEG 10000/Nc/HAuCl4体系中,用Vc还原HAuCl4制备金纳米粒子,以所制备的金纳米粒子为晶种,通过控制HAuCl4与H2PtCl6的质量比,制备不同Pt/Au比的双金属纳米粒子,并进一步研究其对H2O2电化学氧化的催化作用.紫外-可见光谱(Uv-vis)、透射电子显微镜(TEM)、选区电子衍射(SAED).X射线粉末衍射((XRD)等实验结果表明:Au-Pt双金属纳米粒子为面心立方结构的合金.用循环伏安法对Au-Pt双金属纳米粒子修饰的玻碳电极的电化学性能进行测试,结果表明:Au-Pt双金属纳米粒子对H202电化学氧化有一定的催化作用.催化效率随Au-Pt双金属粒子中Pt含量的增加而增加.","authors":[{"authorName":"李中春","id":"30e452b3-10d2-434d-94ff-be49047f2f03","originalAuthorName":"李中春"},{"authorName":"刘燕","id":"b3a7b9a4-8bba-4ea2-b8c2-900625b28dfe","originalAuthorName":"刘燕"},{"authorName":"尚通明","id":"52084396-32f3-4825-a95b-b6c2fd1e7d42","originalAuthorName":"尚通明"},{"authorName":"周全法","id":"dd47911d-16d1-402b-bec6-85f3a0425c5a","originalAuthorName":"周全法"}],"doi":"","fpage":"343","id":"9c153422-48a1-4b79-a27d-7a2d5b2761b9","issue":"2","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"03f9b258-d288-4739-86b6-1547ffffaf24","keyword":"双金属","originalKeyword":"双金属"},{"id":"ffe2a964-9ce8-4ac2-85c9-bb4af7438621","keyword":"纳米粒子","originalKeyword":"纳米粒子"},{"id":"e16d559f-65a5-42bc-8de8-9956da452e2e","keyword":"合成","originalKeyword":"合成"}],"language":"zh","publisherId":"xyjsclygc201102033","title":"Au-Pt双金属纳米粒子的制备及其电催化性质","volume":"40","year":"2011"}],"totalpage":5096,"totalrecord":50952}